Diagonalisation

le me souviens			2
Cours			3
1	Élém	ents propres d'un endomorphisme	3
	1.1	Définition	3
	1.2	Propriétés	3
	1.3	Exemples	3
	1.4	En dimension finie	4
2	Élém	ents propres d'une matrice carrée	4
	2.1	Définition	4
	2.2	Critère d'inversibilité	4
	2.3	Un mot sur le corps de base	5
3		ents propres d'une matrice carrée représentant un endomorphisme	5
	3.1	Lien entre matrice et endomorphisme	5
	3.2	Éléments propres et matrices semblables	5
4		nôme caractéristique	5
	4.1	Polynôme caractéristique d'une matrice	5
	4.2	Multiplicité, propriétés	6
	4.3	Polynôme caractéristique d'un endomorphisme	6
	4.4	Polynôme caractéristique et sous-espace stable	7
5		onalisabilité	7
	5.1	Diagonalisabilité d'un endomorphisme en dimension finie	7
	5.2	Diagonalisabilité d'une matrice carrée	8
	5.3	Le théorème spectral	8
	5.4	Des exemples	8
6		xes	9
Ü	6.1	Annexe : une démonstration élégante de somme directe	9
Exerci	ces	1	LO
			10
LAC	Lam		$\frac{10}{10}$
			$10 \\ 10$
			$10 \\ 10$
			$10 \\ 11$
			11 11
		ction d'une matrice circulante	
177			
		du CCINP	
	ercices	12 12 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Pet	us prot	blèmes d'entrainement	15

Je me souviens

- 1. Pour $A \in \mathcal{M}_n(\mathbb{K})$, quel est l'endomorphisme canoniquement associé?
- 2. Que signifie : « F_1, \dots, F_p sont en somme directe » ?

1 Éléments propres d'un endomorphisme

1.1 Définition

<u>Définition.</u> Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. On dit que λ est valeur propre de u lorsqu'il existe x non nul tel que :

$$u(x) = \lambda x$$

On dit alors que x est **vecteur propre** de u associé à la valeur propre λ .

Remarque. Insistons: il faut qu'il existe un vecteur non nul tel que...

Remarque. Un vecteur propre, c'est un vecteur non nul tel que u(x) est colinéaire à x.

Définition. On appelle équation aux éléments propres l'équation :

$$u(x) = \lambda x$$

où l'on cherche les valeurs de λ pour les quelles il existe des solutions x non nuls à l'équation, et on cherche ces solutions aussi.

Définition. Si λ est une valeur propre de u, on appelle sous-espace propre associé à λ l'espace :

$$E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E})$$
$$= \{x \in E, \ u(x) = \lambda x\}$$

1.2 Propriétés

Proposition. x est un vecteur propre de u si et seulement si la droite vectorielle Vect(x) est stable par u.

Théorème.

Des sous-espaces propres associés à des valeurs propres distinctes sont en somme directe.

Plus précisément : si E est un espace vectoriel, $u \in \mathcal{L}(E)$, et si $\lambda_1, \ldots, \lambda_p$ sont des valeurs propres deux à deux distinctes de u, alors la somme $E_{\lambda_1}(u) + \cdots + E_{\lambda_p}(u)$ est directe. On l'écrit donc :

$$E_{\lambda_1}(u) \oplus \cdots \oplus E_{\lambda_p}(u)$$
 ou encore $\bigoplus_{k=1}^p E_{\lambda_k}(u)$

Théorème.

Une famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Plus précisément : si E est un espace vectoriel, $u \in \mathcal{L}(E)$, et si $(x_i)_{i \in I}$ est une famille de vecteurs propres associés à des valeurs propres λ_i deux à deux distinctes, alors $(x_i)_{i \in I}$ est libre.

Corollaire. Si E est de dimension finie n et $u \in \mathcal{L}(E)$, alors u admet au plus n valeurs propres distinctes.

Proposition. Soit $u, v \in \mathcal{L}(E)$, avec $u \circ v = v \circ u$. Alors:

- Tout sous-espace propre de u est stable par v
- Ker u et Im u sont stables par v

1.3 Exemples

Exemple. Soit E un espace vectoriel. Déterminer les éléments propres de :

- 1. p projeteur de E
- 2. s symétrie de E
- 3. h homothétie de rapport k

Exemple. Déterminer les éléments propres de :

$$\begin{array}{cccc} 1. & u \, : \, \mathbb{K}[X] & \rightarrow & \mathbb{K}[X] \\ P & \mapsto & P' \end{array}$$

Exemple. Donner un exemple simple d'endomorphisme du plan euclidien usuel qui n'a aucune valeur propre.

1.4 En dimension finie

Remarque. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Pour $\lambda \in \mathbb{K}$, on a :

$$\lambda$$
 valeur propre de $u\iff\exists x\neq 0_E,\ u(x)=\lambda x$ $\iff \operatorname{Ker}(u-\lambda\operatorname{Id}_E)\neq\{0_E\}$ $\iff u-\lambda\operatorname{Id}_E \text{ non injective}$ $\iff u-\lambda\operatorname{Id}_E \text{ non bijective}$ car u endomorphisme de E qui est de dimension finie.

Définition. Soit E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On appelle spectre de u:

$$Sp(u) = \{ \lambda \in \mathbb{K}, \ u - \lambda Id_E \notin GL(E) \}$$
$$= \{ \lambda \in \mathbb{K}, \ \lambda \text{ valeur propre de } u \}$$

Proposition. Soit E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors:

$$u \in \mathrm{GL}(E) \iff 0 \notin \mathrm{Sp}(u)$$

2 Éléments propres d'une matrice carrée

2.1 Définition

<u>Définition</u>. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les éléments propres de A sont les éléments propres de l'endomorphisme de $\overline{\mathcal{M}_{n1}}(\mathbb{K})$ qui lui est canoniquement associé :

$$u_A: \mathcal{M}_{n1}(\mathbb{K}) \to \mathcal{M}_{n1}(\mathbb{K})$$

 $X \mapsto AX$

Ainsi, λ est une valeur propre de A s'il existe une matrice colonne non nulle X telle que $AX = \lambda X$. On dit alors que X est un vecteur propre de A, associé à λ . L'espace $E_{\lambda}(A) = \text{Ker}(A - \lambda I_n)$ est l'espace propre associé à λ , et l'équation :

$$AX = \lambda X$$

est l'équation aux éléments propres. Le spectre de A, noté $\operatorname{Sp}(A)$, est l'ensemble des valeurs propres de A.

2.2 Critère d'inversibilité

Proposition. Avec les notations de la défnition :

$$A \in \mathrm{GL}_n(\mathbb{K}) \iff 0 \notin \mathrm{Sp}(A)$$

2.3 Un mot sur le corps de base

Remarque. Si $A \in \mathcal{M}_n(\mathbb{R})$, on a $A \in \mathcal{M}_n(\mathbb{C})$. On peut donc chercher les valeurs propres réelles ou les valeurs propres complexes de A. On note $\operatorname{Sp}_{\mathbb{R}}(A)$ et $\operatorname{Sp}_{\mathbb{C}}(A)$ et on a :

$$\operatorname{Sp}_{\mathbb{R}}(A) \subset \operatorname{Sp}_{\mathbb{C}}(A)$$

Exemple. Déterminer les valeurs propres de $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Proposition. Plus généralement, si \mathbb{K} est un sous-corps de \mathbb{K}' et $A \in \mathcal{M}_n(\mathbb{K})$, alors $\mathrm{Sp}_{\mathbb{K}}(A) \subset \mathrm{Sp}_{\mathbb{K}'}(A)$.

3 Éléments propres d'une matrice carrée représentant un endomorphisme

3.1 Lien entre matrice et endomorphisme

Proposition. Soit E un espace vectoriel de dimension finie n, B une base de E, $u \in \mathcal{L}(E)$ et A = Mat(u, B).

• Les valeurs propres de A sont les valeurs propres de u:

$$Sp(A) = Sp(u)$$

• Les vecteurs propres de A sont les matrices des vecteurs propres de u:

$$X \in E_{\lambda}(A) \iff AX = \lambda X$$

 $\iff u(x) = \lambda x$
 $\iff x \in E_{\lambda}(u)$

où
$$X = \operatorname{Mat}_{\mathcal{B}}(x)$$
.

3.2 Éléments propres et matrices semblables

Proposition. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables, $P \in GL_n(\mathbb{K})$ telle que $A = PBP^{-1}$.

• Les valeurs propres de A sont les valeurs propres de B:

$$Sp(A) = Sp(B)$$

• Les vecteurs propres de A et les vecteurs propres de B sont liés par la formule de changement de base :

$$X \in E_{\lambda}(A) \iff AX = \lambda X$$

 $\iff PBP^{-1}X = \lambda X$
 $\iff B(P^{-1}X) = \lambda(P^{-1}X)$
 $\iff P^{-1}X \in E_{\lambda}(B)$

 $X \mapsto P^{-1}X$ est un isomorphisme de $E_{\lambda}(A) \to E_{\lambda}(B)$.

4 Polynôme caractéristique

4.1 Polynôme caractéristique d'une matrice

Définition. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on définit :

$$\chi_A = \det(XI_n - A) \in \mathbb{K}[X]$$

appelé le polynôme caractéristique de A.

Proposition. χ_A est de degré n et on connaît a priori quelques coefficients :

$$\chi_A = \det(XI_n - A) = X^n - \operatorname{tr}(A)X^{n-1} + \dots + (-1)^n \det(A)$$

Proposition. Les valeurs propres de $A \in \mathcal{M}_n(\mathbb{K})$ sont les racines de sont polynôme caractéristique χ_A .

Exemple. Déterminer les valeurs propres de :

$$A = \begin{pmatrix} -2 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 3 & 3 & -1 \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix} \qquad F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Proposition. Soit A diagonale ou triangulaire :

$$A = \begin{pmatrix} a_{11} & \spadesuit & \cdots & \cdots & \spadesuit \\ 0 & a_{22} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \spadesuit \\ 0 & \cdots & \cdots & 0 & a_{nn} \end{pmatrix}$$

Alors:

$$\chi_A = \prod_{i=1}^n (X - a_{ii})$$

<u>Corollaire.</u> Les valeurs propres d'une matrice diagonale, d'une matrice triangulaire, sont les coefficients diagonale de la matrice.

4.2 Multiplicité, propriétés

<u>Définition.</u> On dit que λ est valeur propre de A de multiplicité m lorsque λ est racine de multiplicité m de χ_A .

Proposition. Un matrice de $\mathcal{M}_n(\mathbb{K})$ admet au plus n valeurs propres, comptées avec multiplicité.

Proposition. Lorsque $\mathbb{K} = \mathbb{C}$, le nombre de valeurs propres de $A \in \mathcal{M}_n(\mathbb{C})$, comptées avec multiplicité, est n.

Proposition. Si $A \in \mathcal{M}_n(\mathbb{R})$ et n impair, alors $\mathrm{Sp}_{\mathbb{R}}(A) \neq \emptyset$.

<u>Proposition.</u> Soit $A \in \mathcal{M}_n(\mathbb{R})$. Si $\lambda \in \mathbb{C} \setminus \mathbb{R}$ est valeur propre de A, alors $\overline{\lambda}$ est aussi valeur propre de A, avec même multiplicité.

<u>Proposition.</u> Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A et A^{\top} ont le même polynôme caractéristique, et donc les mêmes valeurs propres.

Remarque. A et A^{\top} ont les mêmes valeurs propres, mais pas les mêmes vecteurs propres. On peut cependant montrer que, pour λ valeur propre, $E_{\lambda}(A)$ et $E_{\lambda}(A^{\top})$ ont la même dimension.

4.3 Polynôme caractéristique d'un endomorphisme

Proposition. Deux matrices semblables ont le même polynôme caractéristique.

<u>Définition</u>. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. On appelle **polynôme caractéristique** de u le polynôme caractéristique de toute matrice représentant u dans une base.

4.4 Polynôme caractéristique et sous-espace stable

Lemme. Soit $u \in \mathcal{L}(E)$ un endomorphisme, et F un sous-espace vectoriel de E stable par u. On note u_F l'endomorphisme induit par u sur F.

Alors χ_{u_F} divise χ_u .

Théorème.

La dimension d'un sous-espace propre est au plus égale à la multiplicité de la valeur propre correspondante :

Si $u \in \mathcal{L}(E)$ où E est de dimension finie, si $\lambda \in \operatorname{Sp}(u)$ et si $m(\lambda)$ désigne la multiplicité de λ , alors :

$$1 \leqslant \dim E_{\lambda}(u) \leqslant m(\lambda)$$

Le résultat se traduit aussi matriciellement.

Corollaire. Si λ est une valeur propre de multiplicité 1, alors le sous-espace propre associé est une droite vectorielle, c'est-à-dire est de dimension 1.

5 Diagonalisabilité

5.1 Diagonalisabilité d'un endomorphisme en dimension finie

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On dit que u est **diagonalisable** s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}(u,\mathcal{B})$ soit diagonale.

Cela revient à dire qu'il existe une base de E formée de vecteurs propres de u.

Caractérisation.

Soit E espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Alors u est diagonalisable si et seulement si E est somme (directe) des sous-espaces propres de u:

$$u$$
 diagonalisable $\iff \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u) = E$ $\iff \sum_{\lambda \in \operatorname{Sp}(u)} \dim (E_{\lambda}(u)) = n$

Caractérisation.

Soit E espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Alors u est diagonalisable si et seulement si

- χ_u est scindé
- chaque sous-espace propre a pour dimension la multiplicité de la valeur propre associée

Remarque. Ca signifie que l'on peut écrire :

$$\chi_u = \prod_{i=1}^p (X - \lambda_i)^{m_i}, \text{ avec les } \lambda_i \text{ distincts}$$

et

$$\forall i \in \{1, \dots, p\}, \dim (E_{\lambda_i}(u)) = m_i$$

Corollaire. Soit E espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$. Si u admet n valeurs propres distinctes, alors u est diagonalisable. Et ses sous-espace propres sont des droites vectorielles.

Remarque. C'est bien une condition suffisante, non nécessaire.

5.2 Diagonalisabilité d'une matrice carrée

<u>Définition</u>. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est **diagonalisable** si et seulement si elle est semblable à une matrice diagonale :

$$\exists D \in \mathcal{M}_n(\mathbb{K}) \text{ diagonale}, \exists P \in \mathrm{GL}_n(\mathbb{K}), \ A = PDP^{-1}$$

Remarque. Les coefficients de D sont les valeurs propres de A, avec multiplicité.

Les propriétés vues pour les endomorphismes se traduisent matriciellement :

Proposition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

$$A \text{ diagonalisable} \iff \bigoplus_{\lambda \in \operatorname{Sp}(A)} E_{\lambda}(A) = \mathcal{M}_{n1}(\mathbb{K})$$

$$\iff \sum_{\lambda \in \operatorname{Sp}(A)} \dim \left(E_{\lambda}(A) \right) = n$$

$$\iff \begin{cases} \chi_{A} \text{ est scind\'e} \\ \forall \lambda \in \operatorname{Sp}(A), \dim \left(E_{\lambda}(A) \right) = m(\lambda) \end{cases}$$

On a aussi:

 χ_A est scindé à racines simples \implies A diagonalisable

Enfin, si $A = Mat(u, \mathcal{B})$,

A est diagonalisable $\iff u$ diagonalisable

Remarque. Diagonaliser A, c'est trouver une matrice de passage P et une matrice D diagonale telle que $A = PDP^{-1}$. Sauf si c'est demandé, on ne calcule pas P^{-1} .

Proposition. Pour $A \in \mathcal{M}_n(\mathbb{K})$:

A diagonalisable $\iff A^{\top}$ diagonalisable

5.3 Le théorème spectral

On démontrera et on complètera plus tard le résultat suivant :

Proposition. Si $A \in \mathcal{S}_n(\mathbb{R})$ est symétrique à coefficients réels, alors A est diagonalisable.

5.4 Des exemples

Exemple. Diagonaliser
$$J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$
, matrice pleine de 1.

Exemple. Diagonaliser
$$A = (a_{ij})_{ij} \in \mathcal{M}_n(\mathbb{K})$$
 où $a_{ij} = \begin{cases} \alpha & \text{si } i = j \\ \beta & \text{sinon} \end{cases}$

Exemple. On considère
$$B = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 1 \\ 1 & \dots & 1 & 1 \end{pmatrix}$$
.

Déterminer une base de $\operatorname{Ker} B$ et une base de $\operatorname{Im} B$. Puis montrer que B est diagonalisable.

6 Annexes

6.1 Annexe : une démonstration élégante de somme directe.

Théorème.

Si $\lambda_1, \ldots, \lambda_p$ sont des scalaires deux à deux distincts, et $u \in \mathcal{L}(E)$, alors la somme des $F_k = \text{Ker}(u - \lambda_k \operatorname{Id}_E)$ est directe :

$$\sum_{k=1}^{p} \operatorname{Ker}(u - \lambda_k \operatorname{Id}_E) = \bigoplus_{k=1}^{p} \operatorname{Ker}(u - \lambda_k \operatorname{Id}_E)$$

Preuve. Soit $(x_1,x_2,\dots,x_p)\in F_1\times F_2\times\dots\times F_p$ tels que $x_1+x_2+\dots+x_p=0.$

En appliquant à cette égalité u, puis u^2 , ..., puis u^{p-1} , on obtient :

$$\begin{cases} x_1 + x_2 + \dots + x_p = 0 & (L_0) \\ \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_p x_p = 0 & (L_1) \\ \vdots \\ \lambda_1^{p-1} x_1 + \lambda_2^{p-1} x_2 + \dots + \lambda_p^{p-1} x_p = 0 & (L_{p-1}) \end{cases}$$

Tout polynôme $P\in \mathbb{K}_{p-1}[X]$ s'écrit $P=\sum_{k=0}^{p-1}a_kX^k$. En effectuant $a_0(L_0)+a_1(L_1)+\cdots+a_{p-1}(L_{p-1}),$ on obtient :

$$P(\lambda_1)x_1 + P(\lambda_2)x_2 + \dots + P(\lambda_p)x_p = 0$$

Cette égalité est vraie pour tout polynôme de $\mathbb{K}_{p-1}[X]$, donc en particulier pour les polynômes d'interpolation de Lagrange L_k associés à $(\lambda_1, \ldots, \lambda_p)$, qui satisfont :

$$\begin{cases} L_k(\lambda_k) = 1 \\ L_k(\lambda_i) = 0 \text{ pour } i \neq k \end{cases}$$

ce qui fournit $x_k = 0$ pour tout k.

On a montré que les $\operatorname{Ker}(u-\lambda_k\operatorname{Id}_E)$ sont en somme directe. \square

Exercices et résultats classiques à connaître

La matrice pleine de 1

240.1

Déterminer les éléments propres de :

$$J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

Autour de la matrice compagnon

240.2

Soit $P = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} + X^n \in \mathbb{K}[X]$ un polynôme unitaire. On appelle **matrice compagnon** de P la matrice :

$$C = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

- (a) Montrer que P est le polynôme caractéristique de C.
- (b) On suppose dans cette question que P est scindé à racines simples, notées $\lambda_1, \ldots, \lambda_n$. Montrer que :

$$C^{\top} = V(\lambda_1, \dots, \lambda_n) \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} V(\lambda_1, \dots, \lambda_n)^{-1}$$

où $V(\lambda_1, \ldots, \lambda_n)$ désigne la matrice de Vandermonde de $(\lambda_1, \ldots, \lambda_n)$.

Un endomorphisme matriciel

240.3

On considère les matrices réelles :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{ et } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- (a) Calculer AM MA.
- (b) Déterminer les éléments propres de l'endomorphisme :

$$M \mapsto AM - MA$$

Un exemple d'équation matricielle

240.4

Soit
$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$
.

On propose de résoudre dans $\mathcal{M}_3(\mathbb{R})$ l'équation : $(E): X^2 + X = A$.

- (a) Déterminer une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$.
- (b) Déterminer les matrices $Y \in \mathcal{M}_3(\mathbb{R})$ telles que $Y^2 + Y = D$. On commencera pour cela par montrer qu'une telle matrice Y commute avec D, et par en déduire que c'est une matrice diagonale.
- (c) Résoudre alors l'équation (E).

Diagonalisation simultanée

240.5

Dans une espace vectoriel E de dimension finie, on considère deux endomorphismes u et v diagonalisables tels que $u \circ v = v \circ u$.

- (a) Montrer que les sous-espaces propres de v sont stables par u.
- (b) Montrer que l'endomorphisme induit de u à un sous-espace propre de v est diagonalisable.
- (c) Montrer qu'il existe une base de E constituée de vecteurs propres de u et v.

Réduction d'une matrice circulante

240.6

On considère, pour
$$n\geqslant 2$$
, la matrice $J=\left(\begin{array}{ccccc} 0&1&0&\cdots&0\\ &&&&&0\\ &&&&&1\\ 1&0&\cdots&&0\\ \end{array}\right)$

- (a) Montrer que la matrice J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$
- (b) Application : calculer, pour $a_0, \ldots, a_{n-1} \in \mathbb{C}$, $\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ a_1 & \dots & a_{n-1} & a_0 \end{vmatrix}$

2025-2026 http://mpi.lamartin.fr 11/17

2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

240.7

GNP 59.13

Soit n un entier naturel tel que $n \ge 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On pose : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif
 - (b) en utilisant une matrice de f.
- 3. f est-il diagonalisable?

240.8

GNP 67

Soit la matrice $M = \begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$ où a,b,c sont des réels.

M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?

240.9

GNP 68.111

Soit la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Démontrer que A est diagonalisable de quatre deux manières :
 - (b) en calculant directement le déterminant $\det(\lambda I_3 A)$, où I_3 est la matrice identité d'ordre 3, et en déterminant les sous-espaces propres,
 - (c) en utilisant le rang de la matrice,

240.10

GNP 69

On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

1. Déterminer le rang de A.

240.11

GNP 70.1

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
.

1. Déterminer les valeurs propres et les vecteurs propres de $A.\ A$ est-elle diagonalisable?

240.12

GNP 72

Soit n un entier naturel non nul.

Soit f un endomorphisme d'un espace vectoriel E de dimension n, et soit $e = (e_1, \ldots, e_n)$ une base de E.

On suppose que $f(e_1) = f(e_2) = \cdots = f(e_n) = v$, où v est un vecteur donné de E.

- 1. Donner le rang de f.
- 2. f est-il diagonalisable? (discuter en fonction du vecteur v)

240.13

GNP 73

On pose $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$.

- 1. Déterminer les valeurs propres et les vecteurs propres de A.
- 2. Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$.

En déduire que l'ensemble des matrices qui commutent avec A est $\mathrm{Vect}\,(\mathrm{I}_2,A).$

240.14

GNP 74

- 1. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.
 - (a) Justifier sans calcul que A est diagonalisable.

- (b) Déterminer les valeurs propres de A puis une base de vecteurs propres associés.
- 2. On considère le système différentiel $\begin{cases} x' = x + 2z \\ y' = y \\ z' = 2x + z \end{cases}$ où x, y, z désignent trois fonctions de la variable t, dérivables sur \mathbb{R} .

En utilisant la question 1. et en le justifiant, résoudre ce système.

240.15

GNP 83

Soit u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E.

- 1. Soit λ un réel non nul. Prouver que si λ est valeur propre de $u\circ v,$ alors λ est valeur propre de $v\circ u.$
- 2. On considère, sur $E=\mathbb{R}\left[X\right]$ les endomorphismes u et v définis par $u:P\longmapsto\int_{1}^{X}P$ et $v:P\longmapsto P'$. Déterminer $\operatorname{Ker}(u\circ v)$ et $\operatorname{Ker}(v\circ u)$. Le résultat de la question 1. reste-t-il
- 3. Si E est de dimension finie, démontrer que le résultat de la première question reste vrai pour $\lambda = 0$.

 Indication : penser à utiliser le déterminant.

240.16

vrai pour $\lambda = 0$?

 $\bigcirc\hspace{-0.075cm}\bigcirc\hspace{-0.075cm}\bigcirc\hspace{-0.075cm}91.12$

On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Montrer que A n'admet qu'une seule valeur propre que l'on déterminera
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?

240.17

GNP 101.2

2. On considère la matrice $A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$.

- (a) Justifier, sans calcul, que la matrice A est diagonalisable.
- (b) Prouver que $-\frac{1}{2}$ est valeur propre de A et déterminer le sous-espace propre associé.
- (c) Déterminer une matrice P inversible et une matrice D diagonale de $\mathcal{M}_3(\mathbb{R})$ telles que $D = P^{-1}AP$.

Remarque : le calcul de P^{-1} n'est pas demandé.

Exercices

240.18

Soit
$$A = \frac{1}{2} \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$$
.

- (a) Déterminer les valeurs propres de A.
- (b) Déterminer une matrice P inversible telle que $D=P^{-1}AP$ soit diagonale.
- (c) Quelle est la limite de $(A^n)_n$?

240.19

Soit
$$A = \begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
.

- (a) Déterminer les valeurs propres réelles de A. La matrice A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{R})$?
- (b) Déterminer les valeurs propres complexes de A. La matrice A est-elle diagonalisable dans $\mathcal{M}_4(\mathbb{C})$?

240.20

Soit a, b réels,

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ et } M(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$

- (a) Montrer que A est diagonalisable, et préciser une matrice P inversible telle que $P^{-1}AP$ soit diagonale.
- (b) Exprimer $P^{-1}M(a,b)P$ en fonction de a et b.
- (c) En déduire le déterminant et le spectre de M(a,b).

240.21

Déterminer les éléments propres de :

- (a) $D: f \mapsto f' \text{ sur } E = \mathcal{C}^{\infty}(I, \mathbb{R}).$
- (b) $\Delta: (u_n)_n \mapsto (u_{n+1} u_n)_n$ sur E ensemble des suites réelles qui convergent vers 0.

240.22

Déterminer les éléments propres de :

$$\tau: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})
M \mapsto M^{\top}$$

240.23

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite stochastique si ses coefficients sont des réels ≥ 0 , et si la somme des coefficients de chacune de ses lignes est égale à 1.

- (a) Démontrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors $|\lambda| \leq 1$.
- (b) Démontrer que 1 est valeur propre et donner un vecteur propre associé.

240.24

Déterminer les réels x, y tq $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ soit vecteur propre de $\begin{pmatrix} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

240.25

Soit u un automorphisme d'un \mathbb{K} -e.v. E. Montrer que :

$$\operatorname{Sp}(u^{-1}) = \left\{ \frac{1}{\lambda}, \ \lambda \in \operatorname{Sp}(u) \right\}$$

240.26

Déterminer les éléments propres de :

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

240.27

Pour $P \in \mathbb{R}[X]$, on définit :

$$\varphi(P) = (X-1)(X-2)P' - 2XP$$

- (a) Montrer que φ est un endomorphisme de $\mathbb{R}[X]$.
- (b) Soit P un vecteur propre de φ . Déterminer le degré de P.
- (c) Écrire la matrice M de l'endomorphisme induit par φ sur $\mathbb{R}_2[X]$, dans la base $(1, (X-1), (X-1)^2)$.
- (d) Déterminer les éléments propres de φ .

240.28

Soit $n \geq 3$, $a \in \mathbb{C}$ et $M \in \mathcal{M}_n(\mathbb{C})$ définie par :

$$M = \begin{pmatrix} a & 0 & \dots & 0 \\ 1 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

- (a) Quel est le rang de M? Préciser $\operatorname{Ker} M$ et $\operatorname{Im} M.$
- (b) Donner les valeurs propres de M.
- (c) La matrice M est-elle diagonalisable?

Petits problèmes d'entrainement

240.29

Soit E un espace vectoriel de dimension finie $p \ge 1$, $u, v \in \mathcal{L}(E)$ tels que :

$$u \circ v - v \circ u = u$$

- (a) Montrer que tr(u) = 0.
- (b) Montrer que, pour tout $n \in \mathbb{N}$:

$$u^n \circ v - v \circ u^n = nu^n$$

- (c) Montrer que $\phi: f \mapsto f \circ v v \circ f$ est un endomorphisme de $\mathcal{L}(E)$.
- (d) En déduire, en utilisant la dimension de $\mathcal{L}(E)$, que u est nilpotent.

240.30

On considère $E = \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$. Pour $f \in E$, et $x \ge 0$, on pose :

$$T_f(x) = \begin{cases} f(0) & \text{si } x = 0\\ \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t & \text{si } x > 0 \end{cases}$$

- (a) Montrer que $T: f \mapsto T_f$ est un endomorphisme de E.
- (b) Déterminer les éléments propres de T.

240.31

- (a) Montrer qu'une matrice nilpotente est de trace nulle.
- (b) On considère $A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$. Montrer, sans calculer de polynôme caractéristique, qu'il existe λ réel tel que $A - \lambda I_3$ soit nilpotente.

240.32

Soit u un endomorphisme de E K-espace vectoriel.

- (a) Montrer que tout sous-espace propre associé à une valeur propre non nulle est inclus dans $\operatorname{Im} u$.
- (b) Montrer que tout vecteur propre de u est dans Im u ou dans Ker u.
- (c) Montrer que, pour que u soit diagonalisable, il est nécessaire que $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$.
- (d) Montrer qu'avec $E = \mathbb{K}_n[X]$ et $u: P \mapsto P P'$, on a $E = \text{Ker}(u) \oplus \text{Im}(u)$ mais u n'est pas diagonalisable.

240.33

(a) Montrer que l'application définie par :

$$\varphi(P) = (X^2 - 1)P'(X) - (4X + 1)P(X)$$

est un endomorphisme de $\mathbb{R}_4[X]$.

(b) Résoudre l'équation différentielle :

$$y' = \left(\frac{5+\lambda}{2(x-1)} + \frac{3-\lambda}{2(x+1)}\right)y$$

(c) En déduire les valeurs propres et les vecteurs propres de φ .

240.34

Soient u endomorphisme d'un K-espace vectoriel E de dimension finie $n \geq 2$. On suppose que E est le seul sous-espace vectoriel non nul stable par u.

- (a) L'endomorphisme u possède-t-il des valeurs propres?
- (b) Montrer que pour tout $x \in E \setminus \{0_E\}$, la famille $(x, u(x), \dots, u^{n-1}(x))$ est une base de E. Quelle est la forme de la matrice de u dans cette base?
- (c) Montrer que cette matrice ne dépend pas du choix de x.

240.35

Soit $A \in \mathcal{M}_n(\mathbb{C})$ et les matrices définies par blocs dans $\mathcal{M}_{2n}(\mathbb{C})$:

$$B = \frac{1}{2} \begin{pmatrix} A & A \\ A & A \end{pmatrix} \text{ et } P = \begin{pmatrix} I_n & I_n \\ I_n & -I_n \end{pmatrix}$$

- (b) Préciser la matrice $B' = P^{-1}BP$.
- (c) Montrer que $Sp(B) = Sp(A) \cup \{0\}.$
- (d) Pour $\lambda \in \operatorname{Sp}(B)$, préciser dim $\operatorname{Ker}(B' \lambda I_{2n})$ en fonction de dim $\operatorname{Ker}(A \lambda I_n)$.
- (e) En déduire que B est diagonalisable si et seulement si A l'est.

240.36

Soit $A \in \mathcal{M}_n(\mathbb{C})$ et la matrices définies par blocs dans $\mathcal{M}_{2n}(\mathbb{C})$:

$$B = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$$

- (a) Montrer que $\lambda \in \operatorname{Sp}(B)$ si et seulement si $\lambda^2 \in \operatorname{Sp}(A)$ et comparer dans ce cas dim $\operatorname{Ker}(B \lambda I_{2n})$ et dim $\operatorname{Ker}(A \lambda^2 I_n)$.
- (b) En déduire que B est diagonalisable si et seulement si A est diagonalisable et inversible.

240.37

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soit $f \in \mathcal{L}(E)$ un endomorphisme de E. On note :

$$C(f) = \{ g \in \mathcal{L}(E), \ f \circ g = g \circ f \}$$

On suppose que f est diagonalisable.

- (a) Motnrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- (b) Pour $g \in \mathcal{L}(E)$, montrer que $g \in C(f)$ si et seulement si chaque sousespace propre de f est stable par g.
- (c) En déduire que :

$$\dim C(f) = \sum_{\lambda \in \operatorname{Sp}(f)} m_{\lambda}^2$$

où m_{λ} désigne la multiplicité de λ dans le polynôme χ_f .

240.38

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (a) Montrer que, si $\operatorname{rg}(A) < n-1$, alors $(\operatorname{Com} A)^{\top} = 0$.
- (b) Montrer que les vecteurs propres de A sont aussi vecteurs propres de $(\operatorname{Com} A)^{\top}.$
- (c) Que dire de $(\operatorname{Com} A)^{\top}$ et de $\operatorname{Com} A$ lorsque A est diagonalisable?

240.39

Soit E un K-espace vectoriel de dimension finie et $(f_i)_{i \in I}$ une famille d'endomorphismes diagonalisables de E. On suppose que I a au moins deux éléments.

- (a) Montrer que, si les f_i commutent deux à deux, ils sont simultanément diagonalisables, c'est-à-dire qu'il existe une base de E formée de vecteurs qui sont vecteurs propres de chacun des f_i .

 On pourra raisonner par récurrence sur la dimension de E, et écarter le cas où tous les f_i sont des homothéties.
- (b) Soit u, v deux endomorphismes diagonalisables qui commutent. Montrer que, pour tout $\lambda, \mu \in \mathbb{K}$, $\lambda u + \mu v$ est diagonalisable.
- (c) Soit $n \in \mathbb{N}^*$, G un sous-groupe de $GL_n(\mathbb{K})$ tel que $M^2 = I_n$ pour tout $M \in G$. Montrer que $Card(G) \leq 2^n$. En déduire que, pour tout $m, n \in \mathbb{N}^*$, $GL_n(\mathbb{K})$ et $GL_m(\mathbb{K})$ sont isomorphes si et seulement si n = m.

240.40

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique, c'est-à-dire satisfaisant :

$$\begin{cases} 0 \leqslant a_{ij} \leqslant 1 & \forall i, \\ \sum_{j=1}^{n} a_{ij} = 1 & \forall i \end{cases}$$

- (a) Montrer que 1 est valeur propre de A.
- (b) Établir que:

$$\forall \lambda \in \operatorname{Sp}_{\mathbb{C}}(A), \ \exists i \text{ t.q. } |\lambda - a_{ii}| \leqslant 1 - a_{ii}$$

$$v_n = \frac{1}{n+1} \sum_{k=0}^{n} u_k$$

 $\operatorname{Sp}_{\mathbb{C}}(A) \subset \bigcup_{i=1}^{n} BF(a_{ii}, 1 - a_{ii})$

Déterminer les éléments propres de T.

240.42

Soient E un K-espace vectoriel de dimension finie et muni d'une base \mathcal{B} , $f \in \mathcal{L}(E)$ et H un hyperplan de E. On note $E^* = \mathcal{L}(E, \mathbb{K})$.

(a) Déterminer la dimension du sous-espace vectoriel :

$$\{u \in E^* \text{ t.q. } u(H) = \{0\}\}$$

- (b) Montrer que si H a pour équation u(x) = 0 alors H est stable par f si et seulement si, $u \circ f$ est colinéaire à u.
- (c) Soient A et L les matrices dans $\mathcal B$ de f et u. Montrer que H est stable par f si, et seulement si, L^{\top} est vecteur propre de A^{\top} .
- (d) Déterminer les plans stables par

$$A = \begin{pmatrix} 3 & -2 & -4 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix}$$