

Polynômes d'endomorphisme, polynômes de matrice

cours	
1	olynôme d'un endomorphisme
	Définition
	Morphisme d'algèbres $P \mapsto P(u) \dots \dots \dots \dots \dots \dots \dots \dots$
	3 Polynôme minimal d'un endomorphisme d'un espace de dimension finie
	4 Base de $\mathbb{K}[u]$
2	olynôme d'une matrice
	1 Définition
	.2 Morphisme d'algèbres $P \mapsto P(A) \dots \dots \dots \dots \dots \dots \dots \dots$
	3 Polynôme minimal d'une matrice carrée
	.4 Base de $\mathbb{K}[A]$
3	ien entre les deux notions
4	nnexes
	Annexe : polynôme d'un élément d'un algèbre
xercio	
Exe	ces et résultats classiques à connaître
	olynôme d'une matrice diagonale
	Taleur propre de $P(u)$
Exe	ces du CCINP
	Ces
	problèmes d'entrainement

Je me souviens

- 1. Que signifie $(A, +, \times, \cdot)$ est une K-algèbre.
- 2. Citer trois exemples d'algèbres.
- 3. Pour $A \in \mathcal{M}_n(\mathbb{K})$ et k entier, que désigne A^k ? A^0 ?
- 4. Pour $u \in \mathcal{L}(E)$ et k entier, que désigne u^k ? u^0 ?
- 5. Qu'est-ce qu'un idéal de $\mathbb{K}[X]$?

1 Polynôme d'un endomorphisme

1.1 Définition

Définition. Si $u \in \mathcal{L}(E)$, et $P = p_d X^d + \cdots + p_1 X + p_0 \in \mathbb{K}[X]$, on définit le **polynôme de l'endomorphisme** u:

$$P(u) = p_d u^d + \dots + p_1 u + p_0 \mathrm{Id}_E$$

C'est un endomorphisme de E.

On note $\mathbb{K}[u]$ l'ensemble des polynômes de l'endomorphisme u.

On dit qu'un endomorphisme v est un **polynôme de l'endomorphisme** u lorsque $v \in \mathbb{K}[u]$, i.e. lorsqu'il existe $P \in \mathbb{K}[X]$ tel que v = P(u).

Remarque. u^k désigne $\underbrace{u \circ \cdots \circ u}_{k \text{ fois}}$.

P(u) n'est pas de la fonction polynomiale associée à P évaluée en u.

Exemple. Avec $P = X^3 - 2X + 1$, $P(u) = u^3 - 2u + \text{Id}_E$, et donc $P(u)(x) = u^3(x) - 2u(x) + x$.

Définition. On dit que P est annulateur de u lorsque $P(u) = 0_{\mathcal{L}(E)}$.

1.2 Morphisme d'algèbres $P \mapsto P(u)$

Théorème.

Soit $u \in \mathcal{L}(E)$. On note :

$$\phi_u : \mathbb{K}[X] \to \mathcal{L}(E)
P \mapsto P(u)$$

- ϕ_u est un morphisme d'algèbres
- $\operatorname{Im} \phi_u = \mathbb{K}[u]$
- Ker ϕ_u est un idéal de $\mathbb{K}[X]$

Exemple. Comme $P = X^3 - 2X + 1 = (X - 1)(X^2 + X - 1)$, par le morphisme ϕ_u , on déduit $u^3 - 2u + \operatorname{Id}_E = (u - \operatorname{Id}_E) \circ (u^2 + u - \operatorname{Id}_E)$.

Proposition.

$$\mathbb{K}[u] = \{ P(u), \ P \in \mathbb{K}[X] \}$$
$$= \text{Vect} ((u^n)_{n \in \mathbb{N}})$$

 $\mathbb{K}[u]$ est une sous-algèbre commutative de $\mathcal{L}(E)$.

Règles de calcul. Pour P, Q polynômes, $u \in \mathcal{L}(E)$ et $\lambda, \mu \in \mathbb{K}$:

$$(\lambda P + \mu Q)(u) = \lambda P(u) + \mu Q(u)$$

 $(PQ)(u) = P(u) \circ Q(u)$
 $P(u)$ et $Q(u)$ commutent
 $1(u) = \mathrm{Id}_E$

1.3 Polynôme minimal d'un endomorphisme d'un espace de dimension finie

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Le morphisme :

$$\phi_u : \mathbb{K}[X] \to \mathcal{L}(E) \\
P \mapsto P(u)$$

n'est pas injectif. Ker ϕ_u est un idéal non nul de $(\mathbb{K}[X], +, \times)$, appelé idéal des polynômes annulateurs de u. Il existe un unique polynôme unitaire, noté π_u et appelé **polynôme minimal de** u, tel que :

$$\operatorname{Ker} \phi_u = (\pi_u) = \{ \pi_u \, Q, \, Q \in \mathbb{K}[X] \}$$

Remarque. On peut aussi trouver la notation μ_u pour le polynôme minimal de u.

Proposition. Pour $u \in \mathcal{L}(E)$ où E est de dimension finie :

$$Q(u) = 0 \iff \pi_u \mid Q$$

 π_u est le polynôme unitaire de plus petit degré qui annule u.

Remarque. Si E n'est pas de dimension finie et $u \in \mathcal{L}(E)$, alors u peut avoir un polynôme minimal, ou pas.

Exemple. Déterminer le polynôme minimal d'une homothétie $\lambda \operatorname{Id}_E$.

Exemple. Déterminer le polynôme minimal d'un projecteur, i.e. un endomorphisme p tel que $p \circ p = p$.

Exemple. Déterminer le polynôme minimal d'une symétrie, i.e. un endomorphisme s tel que $s \circ s = \mathrm{Id}_E$.

Exemple. On considère $D: P \mapsto P'$ dans $\mathcal{L}(\mathbb{K}[X])$. Montrer que D n'admet pas de polynôme minimal.

1.4 Base de $\mathbb{K}[u]$

Théorème.

Soit $u \in \mathcal{L}(E)$ admettant un polynôme minimal π_u , et on note $d = \deg(\pi_u)$. Alors $(u^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[u]$.

Remarque.

- Dans le cas du théorème, dim $\mathbb{K}[u] = \deg \pi_u$.
- ϕ_u : $P \mapsto P(u)$ induit dans le cas du théorème un isomorphisme entre les espaces vectoriels $(\mathbb{K}_d[X], +, \cdot)$ et $(\mathbb{K}[u],+,\cdot).$
- Si u n'admet pas de polynôme minimal, c'est-à-dire lorsque ϕ_u est injective, ϕ_u est un isomorphisme d'algèbres entre $(\mathbb{K}[X], +, \times, \cdot)$ et $(\mathbb{K}[u], +, \circ, \cdot)$.

2 Polynôme d'une matrice

2.1 Définition

Définition. Si $A \in \mathcal{M}_n(\mathbb{K})$ et $P = p_d X^d + \cdots + p_1 X + p_0 \in \mathbb{K}[X]$, on définit le **polynôme de la matrice** A:

$$P(A) = p_d A^d + \dots + p_1 A + p_0 I_n$$

C'est une matrice carrée.

On note $\mathbb{K}[A]$ l'ensemble des polynômes de la matrice A.

On dit qu'une matrice B est un polynôme de la matrice A lorsque $B \in \mathbb{K}[A]$, i.e. lorsqu'il existe $P \in \mathbb{K}[X]$ tel que B = P(A).

Remarque. A^k désigne $\underbrace{A \times \cdots \times A}_{k \text{ fois}}$

P(A) n'est pas de la fonction polynomiale associée à P évaluée en A.

2.2 Morphisme d'algèbres $P \mapsto P(A)$

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note: $\phi_A: \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K})$

- ϕ_A est un morphisme d'algèbres
- $\operatorname{Im} \phi_A = \mathbb{K}[A]$
- Ker ϕ_A est un idéal de $\mathbb{K}[X]$

Proposition.

$$\mathbb{K}[A] = \{ P(A), \ P \in \mathbb{K}[X] \}$$
$$= \text{Vect} ((A^n)_{n \in \mathbb{N}})$$

 $\mathbb{K}[A]$ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.

Règles de calcul. Pour P,Q polynômes, $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda, \mu \in \mathbb{K}$:

$$(\lambda P + \mu Q)(A) = \lambda P(A) + \mu Q(A)$$

 $(PQ)(A) = P(A) \circ Q(A)$
 $P(A)$ et $Q(A)$ commutent
 $1(A) = I_n$

Si A est triangulaire, les coefficients diagonaux de P(A) sont connus :

Lorsque
$$A = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
, $alorsP(A) = \begin{pmatrix} P(\lambda_1) & * & \dots & * \\ 0 & P(\lambda_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & P(\lambda_n) \end{pmatrix}$

2.3 Polynôme minimal d'une matrice carrée

Définition. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le morphisme :

$$\phi_A: \mathbb{K}[X] \to \mathcal{M}_n(\mathbb{K})$$
 $P \mapsto P(A)$

n'est pas injectif. Ker ϕ_A est un idéal non nul de $(\mathbb{K}[X], +, \times)$, appelé **idéal des polynômes annulateurs** de A. Il existe un unique polynôme unitaire, noté π_A et appelé **polynôme minimal de** A, tel que :

$$\operatorname{Ker} \phi_A = (\pi_A) = \{ \pi_A Q, \ Q \in \mathbb{K}[X] \}$$

Remarque. On peut aussi trouver la notation μ_A pour le polynôme minimal de A.

Proposition. Pour $A \in \mathcal{M}_n(\mathbb{K})$:

$$Q(u) = 0 \iff \pi_A \mid Q$$

 π_A est le polynôme unitaire de plus petit degré qui annule u.

Exemple. Dans $\mathcal{M}_n(\mathbb{K})$, déterminer le polynôme minimal de :

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

2.4 Base de $\mathbb{K}[A]$

Théorème.

Soit $A \in \mathcal{M}_n(\mathbb{K})$, π_A son polynôme minimal, et on note $d = \deg(\pi_A)$. Alors $(A^k)_{0 \leq k \leq d-1}$ est une base de $\mathbb{K}[A]$.

Remarque.

- $\dim \mathbb{K}[A] = \deg \pi_A$.
- $\phi_A: P \mapsto P(A)$ induit dans le cas du théorème un isomorphisme entre les espaces vectoriels $(\mathbb{K}_d[X], +, \cdot)$ et $(\mathbb{K}[A], +, \cdot)$.

3 Lien entre les deux notions

Proposition. Soit E un espace vectoriel de dimension finie sur \mathbb{K} , \mathcal{B} une base de E et $u \in \mathcal{L}(E)$. Alors:

$$\forall P \in \mathbb{K}[X], \ \operatorname{Mat}(P(u), \mathcal{B}) = P(\operatorname{Mat}(u, \mathcal{B}))$$

4 Annexes

4.1 Annexe : polynôme d'un élément d'un algèbre

On peut généraliser la construction proposée de $\mathbb{K}[u]$ et $\mathbb{K}[A].$

<u>Définition.</u> Soit $(A, +, \times, \cdot)$ une \mathbb{K} -algèbre, et e son neutre. Pour $P = p_d X^d + \cdots + p_1 X + p_0 \in \mathbb{K}[X]$ et $a \in A$, on définit :

$$P(a) = p_d a^d + \dots + p_1 a + p_0 e$$

appelé **polynôme de** a. C'est un élément de A.

 $\frac{ \mbox{\bf D\'efinition.} \ \, \mbox{Soit} \, \, (\mathcal{A},+,\times,\cdot) \, \, \mbox{une} \, \, \mathbb{K}\mbox{-alg\`ebre, et} \, \, a \in \mathcal{A}. }{ \, \mbox{On note} : }$

$$\mathbb{K}[a] = \{ P(a), \ P \in \mathbb{K}[X] \}$$
$$= \text{Vect} ((a^n)_{n \in \mathbb{N}})$$

Proposition. $\mathbb{K}[a]$ est la plus petite sous-algèbre de $(\mathcal{A}, +, \times, \cdot)$ contenant a, c'est-à-dire la sous-algèbre de $(\mathcal{A}, +, \times, \cdot)$ engendrée par a. Elle est commutative.

Proposition. Soit $a \in \mathcal{A}$. On note:

$$\phi_a: \mathbb{K}[X] \to \mathcal{A} \\
P \mapsto P(a)$$

- ϕ_a est un morphisme d'algèbres
- $\operatorname{Im} \phi_a = \mathbb{K}[a]$
- Ker ϕ_a est un idéal de $\mathbb{K}[X]$

Exercices et résultats classiques à connaître

Polynôme d'une matrice diagonale

250.1

Soit $D = \text{Diag}(d_1, \dots, d_n) \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale, et $P \in \mathbb{K}[X]$ un polynôme. Calculer P(D).

Valeur propre de P(u)

250.2

Soit $u \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel, et $P \in \mathbb{K}[X]$.

Montrer que si λ est valeur propre de u, alors $P(\lambda)$ est valeur propre de P(u).

Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} (= \mathbb{R} ou \mathbb{C}). On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

- 1. Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u)$.
- 2. (a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u)$.
 - (b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$: $(P \text{ polynôme annulateur de } u) \Longrightarrow (PQ \text{ polynôme annulateur de } u)$
- 3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$.

Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

250.4

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
.

- 1. Déterminer les valeurs propres et les vecteurs propres de A. A est-elle diagonalisable?
- 2. Soit $(a,b,c)\in\mathbb{C}^3$ et $B=a\mathrm{I}_3+bA+cA^2,$ où I_3 désigne la matrice identité d'ordre 3.

Déduire de la question 1. les éléments propres de B.

250.5

GNP 91.34

On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

On donne le polynôme caractéristique : $\chi_A = (X-1)^3$.

- 3. Déterminer, en justifiant, le polynôme minimal de A.
- 4. Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de X^n par $(X-1)^2$ et en déduire la valeur de A^n .

250.6

Soit E un \mathbb{K} -espace vectoriel non nul. Montrer qu'un endomorphisme nilpotent de E admet une unique valeur propre, que l'on précisera.

250.7

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$.

- (a) Montrer que $P(A^{\top}) = P(A)^{\top}$.
- (b) Pour $k \in \mathbb{N}$, est-que $P^k(A) = P(A^k)$? $P^k(A) = P(A)^k$?

250.8

Soit $M \in \mathcal{M}_n(\mathbb{K})$. Montrer que M est inversible si et seulement si $\pi_M(0) \neq 0$.

250.9

(a) Déterminer, pour chacune des matrices matrices suivantes, le polynôme minimal.

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

(b) Exploiter ces polynômes minimaux pour exprimer A^n , B^n et C^n pour tout $n \in \mathbb{N}$.

Petits problèmes d'entrainement

250.10

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$, et $u \in \mathcal{L}(E)$. On suppose qu'il existe un vecteur $x_0 \in E$ tel que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est libre. Montrer que les polynômes en u sont les seuls endomorphismes qui commutent avec u.

250. Polynômes d'endomorphisme, polynômes de matrice

250.11

Soit $a \in \mathbb{R}$ et u l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par :

$$u(M) = aM + \operatorname{tr}(M)I_n$$

- (a) Déterminer les éléments propres de u.
- (b) En déduire le polynôme minimal de u.

250.12

Soit E un espace vectoriel réel et $u \in \mathcal{L}(E)$. On suppose qu'il existe un polynôme P annulateur de u, dont 0 est racine simple. Montrer que $\mathrm{Ker}(u) = \mathrm{Ker}(u^2)$.

250.13

(a) Soit $A \in \mathcal{M}_2(\mathbb{K})$. Vérifier que le polynôme :

$$X^2 - \operatorname{tr}(A)X + \det(A)$$

est annulateur de A. Qu'en déduire quant au degré de π_A ?

- (b) Que dire d'une matrice $A \in \mathcal{M}_2(\mathbb{K})$ telle que $\deg(\pi_A) \neq 2$? En déduire une expression du polynôme minimal pour toute matrice 2×2 .
- (c) Déterminer π_A lorsque $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

250.14

Soit $u \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie $n \geqslant 1$. On suppose u diagonalisable. Pour $\lambda \in \operatorname{Sp}(u)$, on note p_{λ} la projection sur $E_{\lambda}(u)$ parallèlement à $\bigoplus_{\mu \in \operatorname{Sp}(u) \setminus \{\lambda\}} E_{\mu}(u).$ Montrer que $p_{\lambda} \in \mathbb{K}[u]$.

250.15

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$. On suppose qu'il existe deux polynômes P et Q premiers entre eux, tels que PQ(u) = 0.

(a) On suppose E de dimension finie. Montrer que :

$$\operatorname{Ker}(P(u)) \oplus \operatorname{Im}(P(u)) = E$$

(b) On ne suppose plus E de dimension finie. Le résultat précédent est-il encore vrai ?

250.16

Soit E un espace vectoriel réel et $u \in \mathcal{L}(E)$. On suppose qu'il existe deux endomorphismes p et q, ainsi que deux réels λ, μ tels que :

$$\begin{cases} u = \lambda p + \mu q \\ u^2 = \lambda^2 p + \mu^2 q \\ u^3 = \lambda^3 p + \mu^3 q \end{cases}$$

Exprimer, pour $n \in \mathbb{N}^*$, u^n en fonction de λ, μ, p, q .

250.17

Montrer que le polynôme minimal et le polynôme caractéristique d'une matrice réelle ont les mêmes facteurs irréductibles.

250.18

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$ et $u \in \mathcal{L}(E)$. Montrer que la multiplicité de $\lambda \in \mathbb{K}$ en tant que racine du polynôme minimal π_u est le plus petit entier p vérifiant :

$$\operatorname{Ker}(u - \lambda \operatorname{Id}_E)^p = \operatorname{Ker}(u - \lambda \operatorname{Id}_E)^{p+1}$$

250.19

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et u l'endomorphisme de $\mathcal{M}_n(\mathbb{K}$ défini par $u: M \mapsto AM$. Montrer que $\pi_A = \pi_u$.