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Je me souviens
1. Qu’est-ce qu’un produit scalaire ?

2. Qu’est-ce qu’une norme ? Lien entre produit scalaire et norme ?

3. Donner des exemples de produits scalaires et de normes.

4. Qu’est-ce que l’inégalité de Cauchy-Schwarz ?

5. Expression du produit scalaire dans une b.o.n. (e1, . . . , en). Et la norme ?

6. Expression des coordonnées du vecteur x dans cette b.o.n. ?

7. Comment définit-on deux vecteurs orthogonaux ? Et l’orthogonal d’un sev ?

8. Méthodes pour montrer qu’une famille de vecteurs est libre ?

9. Qu’est-ce que le théorème de Pythagore ?

10. Si a est un vecteur non nul, comment construire un vecteur unitaire colinéaire à a ?

11. Expression du projeté orthogonal du vecteur x sur la droite vectorielle D = Vect(a) ?

12. Soit F un sev dont on connaît une b.o.n. (e1, . . . , eq) ; expression du projeté orthogonal de x sur F ?

13. Procédé d’orthonormalisation de Gram-Schmidt ?
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Dans ce chapitre, E désigne un R-espace vectoriel.

1 Produit scalaire et norme associée
1.1 Produit scalaire

Définition. On appelle produit scalaire sur E une forme bilinéaire, symétrique, positive et définie-positive
sur E, c’est-à-dire, en notant ϕ cette application :

• ϕ est à valeurs dans R ;

• ϕ est linéaire par rapport à chacune de ses deux variables ;

• ∀x, y ∈ E, ϕ(x, y) = ϕ(y, x) ;

• ∀x ∈ E, ϕ(x, x) > 0 ;

• ∀x ∈ E, ϕ(x, x) = 0 =⇒ x = 0.

Remarque. La symétrie et la linéarité par rapport à l’une des variables suffit à justifier la bilinéarité.

Notation. On note en général 〈x, y〉, (x|y) ou x · y le produit scalaire de x avec y.
Définition. Un espace vectoriel sur R, muni d’un produit scalaire, s’appelle un espace préhilbertien.

S’il est en plus de dimension finie, on dit que c’est un espace euclidien.

1.2 Exemples de référence
Remarque. Les exemples de cette section figurent explicitement au programme, et peuvent donc être utilisés directement.

Définition. Sur Rn, le produit scalaire canonique est défini par :

〈x, y〉 =
n∑

k=1

xkyk

où x = (x1, . . . , xn) et y = (y1, . . . , yn).
Définition. Sur Mn,p(R), le produit scalaire canonique est défini par :

〈A,B〉 = tr(A>B)

Si A = (aij)ij et B = (bij)ij , on a de plus l’expression :

〈A,B〉 =
∑

16i6n
16j6p

aijbij

Il s’agit donc de la somme des produits terme à terme des deux matrices.
Définition. Sur Mn,1(R), le produit scalaire canonique est défini par :

〈X,Y 〉 = X>Y

Remarque. Il coïncide avec le produit scalaire canonique de Rn, via l’identification usuelle entre une matrice colonne
et un n-uplet.
On trouve parfois la définition 〈X,Y 〉 = tr(X>Y ). En effet, on a X>Y ∈ M1(R). La trace permet ici d’en faire un
réel plutôt qu’une matrice 1× 1. On accepte cependant souvent de confondre R et M1(R).

Définition. Sur C0([a, b],R), le produit scalaire canonique est défini par :

〈f, g〉 =
ˆ b

a

f(t)g(t)dt

Proposition. Les produits scalaires définis ci-avant sont bien des produits scalaires.
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1.3 Autres exemples
Remarque. Même s’ils sont très classiques, les exemples de cette section ne figurent pas explicitement au programme.

Exemple. En confondant polynôme et fonction polynomiale associée, R[X] est muni du produit scalaire défini
par :

〈P,Q〉 =
ˆ 1

0

P (t)Q(t)dt

Exemple. Toujours sur R[X], montrer que

〈P,Q〉 =
ˆ +∞

0

P (t)Q(t)e−t dt

définit un produit scalaire.
Exemple. Soit w une fonction continue, à valeurs strictement positives sur un intervalle I. On note :

E = {f ∈ C0(I,R) t.q. f2w intégrable sur I}

C’est un espace vectoriel, que l’on peut munir d’un produit scalaire en posant :

〈f, g〉 =
ˆ
I

f(t)g(t)w(t)dt

Proposition. Les produits scalaires définis ci-avant sont bien des produits scalaires.

1.4 Inégalité de Cauchy-Schwarz
Inégalité de Cauchy-Schwarz.

Pour tout x, y ∈ E, on a :
|〈x, y〉| 6

»
〈x, x〉

»
〈y, y〉

L’égalité a lieu si et seulement si x et y sont colinéaires.

Remarque. On notera ‖x‖ =
√

〈x, x〉 la norme associée au produit scalaire. L’inégalité de Cauchy-Schwarz s’interprète
bien géométriquement.

Inégalité de Minkowski. Pour tout x, y ∈ E, on a :»
〈x+ y, x+ y〉 6

»
〈x, x〉+

»
〈y, y〉

L’égalité a lieu si et seulement si x et y sont colinéaires et de même sens (on dit parfois positivement liés).
Remarque. Avec ‖x‖ =

√
〈x, x〉, l’inégalité de Minkowski n’est rien d’autre que l’inégalité triangulaire sur la norme

euclidienne.

1.5 Norme euclidienne
Définition. On appelle norme euclidienne associée au produit scalaire 〈·, ·〉 l’application :

‖ · ‖ : x 7→ ‖x‖ =
»
〈x, x〉

Proposition. C’est une norme.
Définition. Un vecteur de norme 1 est qualifié d’unitaire.
Proposition. Si E est muni de sa norme euclidienne, le produit scalaire est continu sur E × E.
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1.6 Identités remarquables
Proposition. On a les identités remarquables suivantes :

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉

les identités de polarisation :

〈x, y〉 = 1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
et l’identité du parallélogramme :

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

2 Orthogonalité

2.1 Vecteurs orthogonaux
Définition. Deux vecteurs x et y sont dits orthogonaux si et seulement si :

〈x, y〉 = 0

On note dans ce cas : x ⊥ y.
Remarque. Le vecteur nul est orthogonal à tous les vecteurs de E, et un vecteur orthogonal à tous les vecteurs de E

est nul.

Définition. Une famille (vi)i∈I de vecteurs de E est dite orthogonale si et seulement si :

∀i, j ∈ I, i 6= j =⇒ 〈vi, vj〉 = 0

Elle est dite orthonormée si et seulement si :

∀i, j ∈ I, 〈vi, vj〉 = δij =

®
0 si i 6= j

1 si i = j

Proposition. Toute famille orthogonale de vecteurs non nuls est libre.
Toute famille orthonormée est libre.

Exemple. Les polynômes élémentaires de Lagrange forment une famille libre.
Théorème de Pythagore.

x et y sont orthogonaux si et seulement si ‖x+ y‖2 = ‖x‖2 + ‖y‖2

Cas d’une famille finie de vecteurs. Si (v1, . . . , vp) est une famille orthogonale, alors
∥∥∥∥ p∑
i=1

vi

∥∥∥∥2 =
p∑

i=1

‖vi‖2.

2.2 Sous-espaces orthogonaux
Définition. Soit F et G deux sous-espaces vectoriels de E. On dit qu’ils sont orthogonaux si et seulement si :

∀x ∈ F, ∀y ∈ G, x ⊥ y

On note F ⊥ G.
Proposition. Lorsque F ⊥ G, la somme F +G est directe, et on la note F ©⊥ G.
Proposition. Si (Fi)16i6p est une famille de sous-espaces deux à deux orthogonaux, alors leur somme est directe

et on la note
p

©⊥
i=1

Fi.
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2.3 Sous-espace orthogonal d’une partie
Définition. Soit A une partie de E. On appelle orthogonal de A l’ensemble :

A⊥ = {x ∈ E t.q. ∀a ∈ A, x ⊥ a}

Exemple. {0E}⊥ = E et E⊥ = {0E}.
Proposition. Soit A une partie de E espace préhilbertien.

• A⊥ est un sous-espace vectoriel de E

• Si A ⊂ B, alors B⊥ ⊂ A⊥

• A ⊥ B signifie que A ⊂ B⊥ et B ⊂ A⊥.

Remarque. Pour la dernière propriété, penser à deux droites dans l’espace usuel de dimension 3.

2.4 Orthogonal d’un sous-espace vectoriel
Proposition. Soit F un sous-espace vectoriel de E. Alors F⊥ est orthogonal à F :

F ©⊥ F⊥

mais, en général, F ©⊥ F⊥  E.
Exemple. Soit E = C0([0, 1],R) muni de son produit scalaire usuel, et F le sous-espace vectoriel des fonctions

polynomiales. Déterminer F⊥.
Remarque. On verra au § 4 que, lorsque F est de dimension finie (en particulier dans un espace euclidien), F⊥ et F

sont supplémentaires.

3 Bases orthonormées d’un espace euclidien

Dans cette section, E est un espace euclidien de dimension n ∈ N∗.

3.1 Existence de bases orthonormées
Définition. On appelle base orthonormée de E toute base de E qui soit aussi une famille orthonormée.
Proposition. Toute famille orthonormée de n vecteurs, lorsque n = dimE, est une base orthonormée.
Théorème.

Tout espace euclidien admet au moins une base orthonormée.

Remarque. On verra au § 4.4 un algorithme de construction d’une telle base.

Exemple. Avec le produit scalaire usuel de Mn(R), la famille :(
(Eii)16i6n,

(
1√
2
(Eij + Eji)

)
16i<j6n

,

(
1√
2
(Eij − Eji)

)
16i<j6n

)

est une base orthonormée.

3.2 Construction de bases orthonormées
Voir l’algorithme de Gram-Schmidt au § 4.4.
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3.3 Coordonnées dans une base orthonormée
Proposition. Soit B = (e1, . . . , en) une base orthonormée de E, et x un vecteur de E. Ses coordonnées dans B

sont :

〈e1, x〉
...

〈en, x〉

, c’est-à-dire :

x =

n∑
i=1

〈ei, x〉ei

Remarque. Si la base n’est qu’orthogonale, il faut adapter la formule en normant les vecteurs.
Si la base n’est pas orthonormée, il n’y a pas d’expression simple des coordonnées à l’aide du produit scalaire.

Proposition. Soit B une base orthonormée de E, x et y deux vecteurs dont les coordonnées sont respectivement

X =

x1

...
xn

 et Y =

y1
...
yn

. Alors :

〈x, y〉 = X>Y 〈x, y〉 =
n∑

i=1

xiyi

‖x‖ =
√
X>X ‖x‖ =

Ã
n∑

i=1

x2
i

Remarque. On voit ici l’avantage des bases orthonormées : les formules de calcul du produit scalaire et de la norme
sont celles du produit scalaire et de la norme canonique de Rn.

Proposition. Soit B = (e1, . . . , en) une base orthonormée de E et u ∈ L(E). On note M = (mij)ij la matrice
de u relativement à la base B. Alors, pour tout i, j :

mij = 〈ei, u(ej)〉

4 Projection orthogonale sur un sous-espace de dimension finie

4.1 Théorème de la base orthonormée incomplète
Théorème de la base orthonormée incomplète.

Si (e1, . . . , ep) est une famille orthonormée de E euclidien de dimension n, on peut la compléter en une
base orthonormée (e1, . . . , ep, ep+1, . . . , en) de E.

4.2 Projection orthogonale sur un sous-espace de dimension finie
Définition. Soit F un sous-espace vectoriel de dimension finie d’un espace préhilbertien E. On appelle projec-

tion orthogonale sur F , et on note pF , la projection sur F parallèlement à F⊥.
Remarque. Rappelons que, par définition, pF (x) est l’unique vecteur y tel que :®

y ∈ F

y − x ∈ F⊥

Ceci fournit une méthode de détermination de pF (x) par résolution d’un système linéaire lorsque l’on connaît une
famille génératrice de F .

Remarque. On a supposé F de dimension finie, mais si F est de dimension infinie et que F⊕F⊥ = E, alors la projection
orthogonale est bien définie.
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Proposition. Si (e1, . . . , ep) est une base orthonormée de F , alors :

pF (x) =

p∑
i=1

〈ei, x〉ei

Remarque. Ceci fournit une seconde méthode de détermination de pF (x), lorsque l’on connaît une base orthonormée
de F .

Exemple. Soit a ∈ E un vecteur non nul. Déterminer l’expression de la projection orthogonale sur Vect(a), et
celle sur Vect(a)⊥.

Exemple. Dans E = C0([0, 1],R) muni de son produit scalaire canonique, déterminer le projeté orthogonal
de t 7→ t2 sur F = Vect(t 7→ 1, t 7→ t).

4.3 Distance à un sous-espace vectoriel de dimension finie
Définition. Soit F un sous-espace vectoriel de E, et x ∈ E. On appelle distance de x à F la quantité :

d(x, F ) = Inf
y∈F

‖x− y‖

Théorème.

Si F est de dimension finie, alors le projeté orthogonal de x sur F est l’unique vecteur de F qui réalise
la distance précédente :
C’est l’unique y0 ∈ F tel que :

‖x− y0‖ = Min
y∈F

‖x− y‖

Ainsi :
d(x, F ) = ‖x− pF (x)‖ =

»
‖x‖2 − ‖pF (x)‖2

Exemple. Justifier l’existence et déterminer :

Inf
a,b∈R

ˆ 1

0

(t2 − at− b)2 dt

4.4 Algorithme d’orthonormalsation de Gram-Schmidt
Théorème de Gram-Schmidt.

Partant d’une famille (u1, . . . , up) supposée libre de E (par exemple une base), il existe une unique famille
(e1, . . . , ep) telle que :

• (e1, . . . , ep) est orthonormée ;

• ∀k ∈ {1, . . . , p}, Vect(e1, . . . , ek) = Vect(u1, . . . , uk) ;

• ∀k ∈ {1, . . . , p}, 〈ek, vk〉 > 0.

Algorithme. Cette famille peut être construite par l’algorithme suivant : Pour chaque k ∈ {1, . . . , p}, on définit
e′k = uk−pk−1(uk) (où pk−1 désigne la projection orthogonale sur Fk−1 = Vect(e1, . . . , ek−1)) et ek =

e′k
‖e′k‖

.
Comme Fk−1 est connue par une base orthonormée, l’expression de la projection orthogonale est simple.

Remarque. La matrice de la famille (e1, . . . , ep) dans la base (u1, . . . , up) de Fp est triangulaire supérieure.
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5 Formes linéaires sur un espace euclidien

5.1 Représentation des formes linéaires
Théorème de représentation des formes linéaires.

Soit ϕ une forme linéaire sur un espace euclidien E. Alors il existe un unique vecteur a ∈ E tel que :

∀x ∈ E, ϕ(x) = 〈a, x〉

En d’autres termes, en dimension finie, toute forme linéaire peut être représentée à l’aide d’un produit
scalaire.

Remarque. Soit H un hyperplan. Alors il existe une forme linéaire non nulle ϕ telle que H = Kerϕ. On applique à ϕ

le théorème précédent, et on a la définition suivante :

Définition. Lorsque H = Kerϕ, où ϕ 6= 0, le vecteur a est orthogonal à l’hyperplan H = Kerϕ. On dit que a
est un vecteur normal à H.

Remarque. Les vecteurs orthogonaux à H sont alors les vecteurs colinéaires à a.

Corollaire. On conserve les notations précédentes.

Si E est muni d’une base orthonormée, et que a a pour coordonnées A =

a1
...
an

, alors une équation de

H est donnée par :

x ∈ H ⇐⇒ A>X = 0

⇐⇒ a1x1 + · · ·+ anxn = 0

où X =

x1

...
xn

.

5.2 Distance à un hyperplan, à une droite
Théorème.

Soit H un hyperplan de E, et a un vecteur normal de H. Alors pour tout x ∈ E, on a :

d(x,H) =
|〈a, x〉|
‖a‖

Soit D un droite vectorielle de E, dirigée par un vecteur a. Alors, pour tout x ∈ E, on a :

d2(x,D) = ‖x‖2 − d2(x,D⊥)

2025-2026 http://mpi.lamartin.fr 9/16

http://mpi.lamartin.fr


2
0
2
6

MPI* 310. Espaces préhilbertiens réels

6 Annexes
6.1 Annexe : projecteurs orthogonaux associés à une décomposition orthogonale de l’espace

Proposition. Soit E un espace euclidien, (Fi)16i6p

une famille de p sous-espaces de E deux à deux
orthogonaux. On suppose que la somme (qui est
directe orthogonale) des Fi est E :

E =
p

©⊥
i=1

Fi

On définit, pour tout i, pi la projection orthogo-

nale sur Fi, c’est-à-dire la projection sur Fi, de
direction ©⊥

j 6=i

Fj . Alors :

IdE =

p∑
i=1

pi et, pour i 6= j, pi ◦ pj = 0

6.2 Annexe : une démonstration astucieuse de l’inégalité de Cauchy-Schwarz

Inégalité de Cauchy-Schwarz.
Pour tout x, y ∈ E, on a :

|〈x, y〉| 6 ‖x‖ ‖y‖

L’égalité a lieu si et seulement si x et y sont
colinéaires.

Preuve.
• Si x ou y est nul, l’inégalité est triviale.
• On suppose x et y non nul. Calculons, pour ε = ±1 :

0 6

∣∣∣∣ x

‖x‖
+ ε

y

‖y‖

∣∣∣∣2
=

≠
x

‖x‖
+ ε

y

‖y‖
,

x

‖x‖
+ ε

y

‖y‖

∑
= 2 + 2ε

〈x, y〉
‖x‖ ‖y‖

donc :
−‖x‖ ‖y‖ 6 ε〈x, y〉

c’est-à-dire :

−‖x‖ ‖y‖ 6 〈x, y〉 et − ‖x‖ ‖y‖ 6 −〈x, y〉

soit encore :

−‖x‖ ‖y‖ 6 〈x, y〉 et ‖x‖ ‖y‖ > 〈x, y〉

ce qui fournit l’inégalité annoncée, ainsi que le cas d’éga-
lité.

Remarque. Cette démonstration est assez peu connue
des correcteurs et interrogateurs des concours, et il
n’est pas recommandé de l’utiliser au concours : on
lui préfèrera la version traditionnelle.
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MPI* 310. Espaces préhilbertiens réels

Exercices et résultats classiques à connaître

Calcul d’une borne inf avec un projeté orthogonal

310.1
On note E = R[X].

(a) Montrer que l’on définit un produit scalaire sur E en posant :

〈P,Q〉 =
ˆ +∞

0

P (t)Q(t)e−t dt

(b) Calculer, pour p ∈ N, Ip =

ˆ +∞

0

tpe−t dt.

(c) On considère k entier > 2. Calculer :

Inf
a,b∈R

ˆ +∞

0

(
tk − at− b

)2e−t dt

La matrice de Gramm

310.2
Soit E un espace préhilbertien réel. Pour (u1, . . . , up) famille de vecteurs de E, on note G(u1, . . . , up) la matrice
de Mp(R) dont le coefficient d’indice i, j est 〈ui|uj〉.

(a) Montrer que la famille (u1, . . . , up) est liée si et seulement si detG(u1, . . . , up) = 0

(b) Montrer que, si (e1, . . . , ep) est une base d’un sous-espace vectoriel F de E, alors, pour tout x ∈ E :

d(x, F ) =

 
detG(e1, . . . , ep, x)

detG(e1, . . . , ep)

Un orthonormalisation

310.3
On note E = Rn[X], où n > 1.

(a) Vérifier que :

〈P,Q〉 =
ˆ 1

−1

P (x)Q(x)dx

définit un produit scalaire sur E.
On note (e0, e1, . . . , en) la base obtenue par orthonormalisation de la base (1, X, . . . ,Xn).

(b) Pour tout entier k ∈ {1, . . . , n}, on définit :

fk(X) =
dk

dXk
((X2 − 1)k)

b1. Déterminer le degré de fk.
b2. Calculer 〈Xi, fk〉 pour k ∈ {1, . . . , n} et i ∈ {0, . . . , k − 1}.
b3. En déduire que pour tout k ∈ {1, . . . , n}, il existe un λk tel que fk = λkek.
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Exercices du CCINP

310.4 39.13

On note `2 l’ensemble des suites x = (xn)n∈N de nombres réels telles que la
série

∑
x2
n converge.

1. (a) Démontrer que, pour x = (xn)n∈N ∈ `2 et y = (yn)n∈N ∈ `2, la
série

∑
xnyn converge.

On pose alors (x|y) =
+∞∑
n=0

xnyn.

(b) Démontrer que `2 est un sous-espace vectoriel de l’espace vectoriel
des suites de nombres réels.

Dans la suite de l’exercice, on admet que ( | ) est un produit scalaire dans `2.
On suppose que `2 est muni de ce produit scalaire et de la norme euclidienne
associée, notée || ||.

3. On considère l’ensemble F des suites réelles presque nulles c’est-à-dire
l’ensemble des suites réelles dont tous les termes sont nuls sauf peut-être
un nombre fini de termes.
Déterminer F⊥ (au sens de ( | )).
Comparer F et

(
F⊥)⊥.

310.5 76
Soit E un R-espace vectoriel muni d’un produit scalaire noté ( | ).
On pose ∀ x ∈ E, ||x|| =

√
(x|x).

1. (a) Énoncer et démontrer l’inégalité de Cauchy-Schwarz.
(b) Dans quel cas a-t-on égalité ? Le démontrer.

2. Soit E = {f ∈ C ([a, b] ,R) , ∀ x ∈ [a, b] f(x) > 0}.

Prouver que l’ensemble
®ˆ b

a

f(t)dt×
ˆ b

a

1

f(t)
dt , f ∈ E

´
admet une

borne inférieure m et déterminer la valeur de m.

310.6 77
Soit E un espace euclidien.

1. Soit A un sous-espace vectoriel de E.
Démontrer que

(
A⊥)⊥ = A.

2. Soient F et G deux sous-espaces vectoriels de E.

(a) Démontrer que (F +G)
⊥
= F⊥ ∩G⊥.

(b) Démontrer que (F ∩G)
⊥
= F⊥ +G⊥.

310.7 79.23
Soit a et b deux réels tels que a<b.

2. Soit E le R-espace vectoriel des fonctions continues de [a, b] dans R.

On pose : ∀ (f, g) ∈ E2, (f |g) =
ˆ b

a

f(x)g(x)dx.

Démontrer que l’on définit ainsi un produit scalaire sur E.

3. Majorer
ˆ 1

0

√
xe−xdx en utilisant l’inégalité de Cauchy-Schwarz.

310.8 80
Soit E l’espace vectoriel des applications continues et 2π-périodiques de R
dans R.

1. Démontrer que (f | g) = 1

2π

ˆ 2π

0

f (t) g (t)dt définit un produit scalaire
sur E.

2. Soit F le sous-espace vectoriel engendré par f : x 7→ cosx et g : x 7→
cos (2x).

Déterminer le projeté orthogonal sur F de la fonction u : x 7→ sin2 x.

310.9 81

On définit dans M2 (R)×M2 (R) l’application ϕ par : ϕ (A,A′) = tr
(
ATA′),

où tr
(
ATA′) désigne la trace du produit de la matrice AT par la matrice A′.
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On admet que ϕ est un produit scalaire sur M2 (R) .

On note F =

ß(
a b
−b a

)
, (a, b) ∈ R2

™
.

1. Démontrer que F est un sous-espace vectoriel de M2 (R).

2. Déterminer une base de F⊥.

3. Déterminer le projeté orthogonal de J =

(
1 1
1 1

)
sur F⊥ .

4. Calculer la distance de J à F .

310.10 82
Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimen-
sion finie n > 0.
On admet que, pour tout x ∈ E, il existe un élément unique y0 de F tel que
x− y0 soit orthogonal à F et que la distance de x à F soit égale à ‖x− y0‖.

Pour A =

(
a b
c d

)
et A′ =

(
a′ b′

c′ d′

)
, on pose (A | A′) = aa′ + bb′ + cc′ + dd′.

1. Démontrer que ( . | . ) est un produit scalaire sur M2 (R).

2. Calculer la distance de la matrice A =

(
1 0
−1 2

)
au sous-espace vec-

toriel F des matrices triangulaires supérieures.

310.11 92

Soit n ∈ N∗. On considère E = Mn(R) l’espace vectoriel des matrices carrées
d’ordre n.
On pose : ∀(A,B) ∈ E2, 〈A ,B〉 = tr(ATB) où tr désigne la trace et AT

désigne la transposée de la matrice A.

1. Prouver que 〈 , 〉 est un produit scalaire sur E.

2. On note Sn(R) l’ensemble des matrices symétriques de E.
Une matrice A de E est dite antisymétrique lorsque AT = −A.
On note An(R) l’ensemble des matrices antisymétriques de E.
On admet que Sn(R) et An(R) sont des sous-espaces vectoriels de E.

(a) Prouver que E = Sn(R)⊕An(R).
(b) Prouver que An(R)⊥ = Sn(R).

3. Soit F l’ensemble des matrices diagonales de E.
Déterminer F⊥.

Exercices

310.12
Soit E un espace euclidien muni d’une base orthonormée B = (e1, . . . , en).
Montrer que, pour f ∈ L(E) :

tr(f) =
n∑

k=1

〈ek, f(ek)〉

310.13
Montrer que, pour x1, . . . , xn ∈ R :

|x1 + · · ·+ xn| 6
√
n
»

x2
1 + · · ·+ x2

n

310.14

Si A =

(
a b
c d

)
et A′ =

(
a′ b′

c′ d′

)
, alors on pose 〈A,A′〉 = aa′+bb′+cc′+dd′.

(a) Démontrer que 〈 , 〉 est un produit scalaire sur M2(R).

(b) Calculer la distance de la matrice A =

(
1 0
−1 2

)
au sous-espace vecto-

riel F des matrices triangulaires supérieures.

310.15

R4 est muni de sa structure euclidienne canonique. Soit F le sous-espace vec-
toriel défini par :

F = {(x1, x2, x3, x4) ∈ R4 / x1 + x2 + x3 + x4 = 0}
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Déterminer la matrice, dans la base canonique, de la projection orthogonale
sur F .

310.16

(a) Montrer que le système
®
x+ y − z − t = 0

x+ 3y + z − t = 0
définit un plan P de R4.

(b) Construire une base orthonormale (ε1, ε2) de P .

(c) Écrire la matrice dans la base canonique de R4 de la projection ortho-
gonale sur P , puis de la symétrie orthogonale par rapport à P .

(d) Soit v = (1, 1, 1,−1) : calculer d(v, P ).

310.17
Montrer que :

(P,Q) 7→
ˆ 2

0

(2− t)P (t)Q(t)dt

est un produit scalaire sur R2[X] et en déterminer une base orthonormée.

310.18
Sur R2[X], on définit :

〈P,Q〉 = P (1)Q(1) + P ′(1)Q′(1) + P ′′(1)Q′′(1)

(a) Vérifier que 〈·, ·〉 est un produit scalaire.

(b) Trouver une base orthonormale (P0, P1, P2) telle que deg(Pk) = k.

(c) Déterminer la projection orthogonale de X2 sur R1[X].

Petits problèmes d’entrainement

310.19 -

On note E = `2(N,R) l’ensemble des suites réelles (un)n telles que la série∑
u2
n converge. Pour u, v ∈ E, on pose :

〈u, v〉 =
+∞∑
n=0

unvn

(a) Montrer que E est un R-espace vectoriel.

(b) Montrer que 〈·, ·〉 définit un produit scalaire sur E.

On note F le sous-espace des suites nulles à partir d’un certain rang, et
v ∈ E r F .

(c) Donner un exemple de suite v = (vn)n.

(d) Déterminer F⊥. Est-ce que F et F⊥ sont supplémentaires ?

(e) On pose G = Vect(v). Comparer F⊥ +G⊥ et (F ∩G)⊥.

310.20 -

On munit Mn(R) de son produit scalaire canonique.

(a) Montrer que Sn ©⊥ An = Mn(R).

(b) Calculer la distance d
(
A,S3(R)

)
, où :

A =

1 2 3
0 2 4
1 4 3



310.21

Soit n ∈ N∗ et E euclidien de dimension n. On considère B = (e1, . . . , en) une
famille de vecteurs unitaires tels que :

i 6= j =⇒ ‖ei − ej‖ = 1

Montrer que B est une base de E.

310.22
On note B l’ensemble des suites réelles bornées, et F le sous-espace vectoriel
de B formé des suites nulles à partir d’un certain rang.

(a) Montrer que l’on définit un produit scalaire sur B en posant :

〈u, v〉 =
+∞∑
n=0

unvn
2n
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(b) Déterminer F⊥.

(c) Est-ce que F⊥⊥
= F ?

310.23
Soit A une partie de E espace préhilbertien.

(a) Montrer que A⊥ est une partie fermée.

(b) Montrer que A et A ont le même orthogonal.

310.24
Soit E un espace vectoriel normé réel, et S la sphère de centre 0 et de rayon 1,
c’est-à-dire l’ensemble des vecteurs de norme 1.

(a) Est-il vrai que, pour x, y ∈ S avec x 6= y :

∀λ ∈ ]0, 1[, (1− λ)x+ λy /∈ S ?

(b) Et si E est un espace préhilbertien, et que la norme est la norme eucli-
dienne ?

310.25
Soit E euclidien, a, b deux vecteurs unitaires de E. On définit f l’endomor-
phisme de E :

f : x 7→ x− 〈a, x〉b

(a) À quelle condition f est bijectif ?

(b) À quelle condition f est diagonalisable ?

310.26
Soit E euclidien de dimension n > 2, a, b deux vecteurs unitaires de E. On
définit f par :

f : x 7→ 〈a, x〉〈b, x〉

Déterminer le maximum et le minimum de f sur la sphère unité de E.

310.27
Soit A ∈ Mn(R).

(a) Comparer Ker(A) et Ker(A>A).

(b) Comparer Im(A) et Im(AA>).

310.28

Soit A ∈ Mn(R) telle que A2 = 0.

(a) Montrer que Ker(A> +A) = Ker(A) ∩ Ker(A>).

(b) En déduire :

A> +A ∈ GLn(R) ⇐⇒ Im(A) = Ker(A)

310.29
Soit E un espace préhilbertien réel, 〈·, ·〉 son produit scalaire et ‖ · ‖ la norme
euclidienne associée. On s’intéresse à p projecteur de E.

(a) Montrer que, si p est un projecteur orthogonal, alors :

∀x ∈ E, ‖p(x)‖ 6 ‖x‖

(b) Réciproquement, on suppose que, pour tout x ∈ E, ‖p(x)‖ 6 ‖x‖.

b1. Pour x ∈ Im p, y ∈ Ker p et t ∈ R, montrer que :

0 6 2t〈x, y〉+ ‖y‖2

b2. En déduire que le projecteur p est orthgonal.

310.30
Soit E = R[X] muni du produit scalaire défini par :

〈P,Q〉 =
ˆ 1

0

P (t)Q(t)dt

On note qn la projection orthogonale sur Rn[X], P0 = 1 et, pour n ∈ N∗,
Pn = Xn − qn−1(X

n).

(a) Justifier que (Pn)n est une famille libre.

(b) Montrer que, pour tout n, k ∈ N :

k 6= n =⇒ 〈Pk, Pn〉 = 0
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(c) Soit n > 2. Montrer que Pn −XPn−1 est combinaison linéaire de Pn−1

et Pn−2.

310.31
Pour k ∈ Nr {0, 1}, calculer :

mk = Inf
a,b∈R

ˆ +∞

0

(tk − at− b)2e−t dt

310.32
E est un espace euclidien de dimension n pour le produit scalaire 〈·, ·〉 et
u ∈ L(E) tel que :

∀x ∈ E, 〈u(x), x〉 = 0

Montrer que Ker u et Im u sont supplémentaires orthogonaux et que le rang
de u est pair.

310.33

Soit A = (ai,j) ∈ Mn(R) telle que ai,j =
1

i+ j − 1
. Montrer que det(A) > 0.

310.34
Soit E un espace préhilbertien, 〈·, ·〉 son produit scalaire et ‖ · ‖ la norme
euclidienne associée. On suppose qu’il existe n ∈ N∗ et e1, . . . , en des vecteurs
unitaires tels que :

∀x ∈ E, ‖x‖2 =

n∑
k=1

〈x, ek〉2

Est-ce que la famille B = (e1, . . . , en) est nécessairement une base orthonor-
male de E ?

310.35

On munit l’espace E = C0([a, b],R) du produit scalaire :

〈f, g〉 =
ˆ b

a

f(t)g(t)dt

Pour n ∈ N, on note pn : t 7→ tn et P l’ensemble des fonctions polynomiales
sur [a, b].

(a) Justifier que la famille (pn)n est totale, c’est-à-dire qu’elle engendre un
espace vectoriel dense dans E.

(b) Déterminer l’orthogonal de P.

310.36
Soit E euclidien de dimension n > 1 et x1, . . . , xn+2 des vecteurs de E. Mon-
trer qu’il est impossible d’avoir :

∀i, j, 〈xi, xj〉 < 0

310.37
Soit p un projecteur d’un espace euclidien E. On suppose que :

∀x ∈ E, 〈p(x), x〉 > 0

Montrer que p est un projecteur orthogonal.

310.38

On note E l’ensemble des fonctions de classe C1 sur [0, 1]. On définit sur E×E
l’application ϕ par :

ϕ(f, g) =

ˆ 1

0

(fg + f ′g′)

On définit les deux ensembles :

V = {f ∈ E t.q. f(0) = f(1) = 0}
W = {f ∈ E t.q. f ′′ existe et f ′′ = f}

(a) Montrer que ϕ est bien un produit scalaire sur E.

(b) Montrer que W est un sous-espace vectoriel de E de dimension finie, et
en donner une base.

(c) Montrer que V est le supplémentaire orthogonal de W dans E. Donner
l’expression de la projection orthogonale sur W .

(d) Pour (α, β) 6= (0, 0), on définit :

Eα,β = {f ∈ E t.q. f(0) = α, f(1) = β}

Calculer Inf
f∈Eα,β

(ˆ 1

0

(f2 + f ′2)

)
.
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