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§M Pl * 310. Espaces préhilhertiens réels

'Je me souviens

1. Qu’est-ce qu'un produit scalaire ?

2. Qu’est-ce qu’une norme ? Lien entre produit scalaire et norme ?

. Donner des exemples de produits scalaires et de normes.

. Qu’est-ce que 'inégalité de Cauchy-Schwarz ?

. Expression du produit scalaire dans une b.o.n. (e,...,e,). Et la norme?

. Expression des coordonnées du vecteur x dans cette b.o.n.?

. Comment définit-on deux vecteurs orthogonaux ? Et ’orthogonal d’un sev ?

. Méthodes pour montrer qu’une famille de vecteurs est libre ?

© o0 N O ot s~ W

. Qu’est-ce que le théoreme de Pythagore ?

10. Si a est un vecteur non nul, comment construire un vecteur unitaire colinéaire a a ?

11. Expression du projeté orthogonal du vecteur x sur la droite vectorielle D = Vect(a) ?

12. Soit F' un sev dont on connait une b.o.n. (eq,...,e,); expression du projeté orthogonal de x sur F'?

13. Procédé d’orthonormalisation de Gram-Schmidt ?
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1.2

§M Pl * 310. Espaces préhilhertiens réels

Dans ce chapitre, E' désigne un R-espace vectoriel.

\Produit scalaire et norme associée

Produit scalaire

Définition. On appelle produit scalaire sur F une forme bilinéaire, symétrique, positive et définie-positive
sur F, c’est-a-dire, en notant ¢ cette application :

e  est a valeurs dans R;;
e ¢ est linéaire par rapport a chacune de ses deux variables;
o Vz,y € E, p(z,y) = p(y,2);
e Yz € E, p(x,z) > 0;
e VzeFE, p(z,2) =0 = x=0.
Remarque. La symétrie et la linéarité par rapport a I'une des variables suffit & justifier la bilinéarité.

Notation. On note en général (x,y), (z|y) ou x - y le produit scalaire de z avec y.

Définition. Un espace vectoriel sur R, muni d’un produit scalaire, s’appelle un espace préhilbertien.
S’il est en plus de dimension finie, on dit que c’est un espace euclidien.

Exemples de référence

Remarque. Les exemples de cette section figurent explicitement au programme, et peuvent donc étre utilisés directement.

Définition. Sur R", le produit scalaire canonique est défini par :

n
<J), y> = Z TrYk
k=1

oux = (x1,...,2n) €t y= (Y1,--.,Yn)-
Définition. Sur M, ,(R), le produit scalaire canonique est défini par :
(A,B) =tr(A"B)
Si A = (aij)i; et B = (b;j)i;, on a de plus l'expression :
(A,B) = Z aijbij

1<i<n

1<j<p
Il s’agit donc de la somme des produits terme a terme des deux matrices.

Définition. Sur M,, 1(R), le produit scalaire canonique est défini par :

(X, v)=X"y

Remarque. 1! coincide avec le produit scalaire canonique de R™, via I'identification usuelle entre une matrice colonne
et un n-uplet.
On trouve parfois la définition (X,Y) =tr(X"Y). En effet, on a XY € M1 (R). La trace permet ici d’en faire un
réel plutét qu’une matrice 1 x 1. On accepte cependant souvent de confondre R et M1 (R).

Définition. Sur C°([a,b],R), le produit scalaire canonique est défini par :
b
() = [ rorge)ar
a
Proposition. Les produits scalaires définis ci-avant sont bien des produits scalaires.
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1.3

1.4

1.5

gM Pl * 310. Espaces préhilhertiens réels

Autres exemples

Remarque. Méme s’ils sont trés classiques, les exemples de cette section ne figurent pas explicitement au programme.

Exemple. En confondant polynome et fonction polynomiale associée, R[X] est muni du produit scalaire défini
par :

1
Q)= [ Poama
0
Exemple. Toujours sur R[X], montrer que

“+o00
(P,Q) = /0 P)Q(t)e ' dt

définit un produit scalaire.

Exemple. Soit w une fonction continue, a valeurs strictement positives sur un intervalle 7. On note :
E = {f €C’I,R) t.q. f>w intégrable sur I}

C’est un espace vectoriel, que ’on peut munir d’un produit scalaire en posant :

(f.9) = / F(O)g(tyw(t) dt

Proposition. Les produits scalaires définis ci-avant sont bien des produits scalaires.

Inégalité de Cauchy-Schwarz

Inégalité de Cauchy-Schwarz.

Pour tout z,y € E, on a :

ez, y)| < v/ (@, 2)\/ (¥, 9)

L’égalité a lieu si et seulement si z et y sont colinéaires.

Remarque. On notera ||z|| = /{(z, z) la norme associée au produit scalaire. L’inégalité de Cauchy-Schwarz s’interpréte
bien géométriquement.

Inégalité de Minkowski. Pour tout x,y € F, on a :

Ve +ye+y) <2+ ()

L’égalité a lieu si et seulement si x et y sont colinéaires et de méme sens (on dit parfois positivement liés).

Remarque. Avec |z|| = \/(z,z), I'inégalité de Minkowski n’est rien d’autre que I'inégalité triangulaire sur la norme
euclidienne.

Norme euclidienne

Définition. On appelle norme euclidienne associée au produit scalaire (-, -) ’application :

-0 e ] = /(s x)

Proposition. C’est une norme.
Définition. Un vecteur de norme 1 est qualifié d’unitaire.

Proposition. Si F est muni de sa norme euclidienne, le produit scalaire est continu sur £ x E.
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1.6

2.1

2.2

gM Pl * 310. Espaces préhilhertiens réels

Identités remarquables

Proposition. On a les identités remarquables suivantes :
lz +yl* = [l2[* + ly 1> + 2(z, y) lz = yl* = ll2[* + lyl|* — 2(z. y)

les identités de polarisation :

(= +yl? = llz = yl?)

R

1
(@) =5 (lz+yll* = lI* = llvl*) (z,y) =
et l'identité du parallélogramme :

lz +yl* + llz = yl* = 2([l=[* + llyll*)

Orthogonalité

Vecteurs orthogonaux

Définition. Deux vecteurs x et y sont dits orthogonaux si et seulement si :

(z,y) =0
On note dans ce cas : x L y.

Remarque. Le vecteur nul est orthogonal a tous les vecteurs de E, et un vecteur orthogonal a tous les vecteurs de E
est nul.

Définition. Une famille (v;);es de vecteurs de E est dite orthogonale si et seulement si :
Vi,jEI, Z7éj — <’Ui,Uj>=0
Elle est dite orthonormeée si et seulement si :
. 0 sisg j
Vi,jel, <Uivvj>5ij{ 7&]
1 sit=j

Proposition. Toute famille orthogonale de vecteurs non nuls est libre.
Toute famille orthonormée est libre.

Exemple. Les polynémes élémentaires de Lagrange forment une famille libre.

Théoreme de Pythagore.

T et y sont orthogonaux si et seulement si ||z + y||? = ||z]|* + ||y||?

Cas d’une famille finie de vecteurs. Si (v1,...,v,) est une famille orthogonale, alors

2 » ,
=2 [luill®.
i=1

p
> Ui
=1

Sous-espaces orthogonaux

Définition. Soit F' et G deux sous-espaces vectoriels de E. On dit qu’ils sont orthogonaux si et seulement si :
Vee F,Vye G,z Ly
On note F' 1 G.

Proposition. Lorsque F' | G, la somme F + G est directe, et on la note ' D G.

Proposition. Si (F})1<igp est une famille de sous-espaces deux a deux orthogonaux, alors leur somme est directe
P

et on la note (D) F.
i=1

2025-2026 http://mpi.lamartin.fr 5/16


http://mpi.lamartin.fr

2.3

2.4

3.1

3.2

gM Pl * 310. Espaces préhilhertiens réels

Sous-espace orthogonal d’une partie

Définition. Soit A une partie de E. On appelle orthogonal de A ’ensemble :

At ={zeFEtqVYac A z1a}

Exemple. {0p}+ = E et E+ = {0g}.

Proposition. Soit A une partie de E espace préhilbertien.

o A™ est un sous-espace vectoriel de E
e Si AC B, alors B- Cc A+

e A 1 B signifie que A C B+ et B C A+,

Remarque. Pour la derniére propriété, penser a deux droites dans I’espace usuel de dimension 3.

Orthogonal d’un sous-espace vectoriel

Proposition. Soit F un sous-espace vectoriel de E. Alors F- est orthogonal & F :
FQF+

mais, en général, F O F+ ¢ E.

Exemple. Soit £ = C%([0,1],R) muni de son produit scalaire usuel, et F' le sous-espace vectoriel des fonctions
polynomiales. Déterminer F'.

Remarque. On verra au § 4 que, lorsque F est de dimension finie (en particulier dans un espace euclidien), F* et F
sont supplémentaires.

Bases orthonormées d’un espace euclidien

Dans cette section, F est un espace euclidien de dimension n € N*.

Existence de bases orthonormées

Définition. On appelle base orthonormée de E toute base de E qui soit aussi une famille orthonormée.
Proposition. Toute famille orthonormée de n vecteurs, lorsque n = dim E, est une base orthonormée.

Théoréme.

Tout espace euclidien admet au moins une base orthonormée.

Remarque. On verra au § 4.4 un algorithme de construction d’une telle base.

Exemple. Avec le produit scalaire usuel de M, (R), la famille :

1 1
(Eii)1<i<n, ((E, + Ez)> ) ((EZ - E))
( \/E ! ! 1<i<jsn \/i ! / 1<i<j<n

X

est une base orthonormeée.

Construction de bases orthonormées

Voir l'algorithme de Gram-Schmidt au § 4.4.
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3.3 Coordonnées dans une base orthonormée

Proposition. Soit B = (ey,...,e,) une base orthonormée de E, et x un vecteur de E. Ses coordonnées dans B
<61 ) J}>
sont : , C’est-a-dire :
(en, )

Remarque. Si la base n’est qu’orthogonale, il faut adapter la formule en normant les vecteurs.
Si la base n’est pas orthonormée, il n’y a pas d’expression simple des coordonnées a ’aide du produit scalaire.

Proposition. Soit B une base orthonormée de E, = et y deux vecteurs dont les coordonnées sont respectivement
T Y1
X=]:]etY=|]:]. Alors:

T Yn

(z,y) = XY

2] = VXTX

Remarque. On voit ici I'avantage des bases orthonormées : les formules de calcul du produit scalaire et de la norme
sont celles du produit scalaire et de la norme canonique de R"™.

Proposition. Soit B = (ey,...,e;,) une base orthonormée de E et u € L(E). On note M = (m;;);; la matrice
de u relativement a la base B. Alors, pour tout 4, j :

m; = (ei,u(e;))

4 | Projection orthogonale sur un sous-espace de dimension finie

4.1 Théoreme de la base orthonormée incompléte

Théoréeme de la base orthonormée incompléte.

Si (e1,...,ep) est une famille orthonormée de E euclidien de dimension n, on peut la compléter en une
base orthonormée (e1,...,ep, €pt1,...,6e,) de E.

4.2 Projection orthogonale sur un sous-espace de dimension finie

Définition. Soit F' un sous-espace vectoriel de dimension finie d’un espace préhilbertien . On appelle projec-
tion orthogonale sur F, et on note pr, la projection sur F parallelement & F=*.

Remarque. Rappelons que, par définition, pr(z) est 'unique vecteur y tel que :

yeF
y—x € Ft
Ceci fournit une méthode de détermination de pr(z) par résolution d’un systéme linéaire lorsque 'on connait une

famille génératrice de F'.

Remarque. On a supposé F de dimension finie, mais si F' est de dimension infinie et que F @ F+ = E, alors la projection
orthogonale est bien définie.
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Proposition. Si (eq,...,ep) est une base orthonormée de F', alors :
p

pr(x) = Z(ei,@e»
i=1

Remarque. Ceci fournit une seconde méthode de détermination de pr(z), lorsque I'on connait une base orthonormée
de F'.

Exemple. Soit a € E un vecteur non nul. Déterminer l’expression de la projection orthogonale sur Vect(a), et
celle sur Vect(a)t.

Exemple. Dans E = C°([0,1],R) muni de son produit scalaire canonique, déterminer le projeté orthogonal
de t > t? sur F = Vect(t — 1,t > t).

4.3 Distance a un sous-espace vectoriel de dimension finie

Définition. Soit F' un sous-espace vectoriel de E, et z € E. On appelle distance de z a F' la quantité :

(e, F) = Tnf |z~

Théoréme.

Si F' est de dimension finie, alors le projeté orthogonal de x sur F' est I'unique vecteur de F' qui réalise
la distance précédente :
C’est I'unique yo € F tel que :

— = Mi —
lz = oll = Min |lz — y|

Ainsi :

d(z, F) = & = pr(@)ll = v/o]]? — |pr ()]

Exemple. Justifier 'existence et déterminer :

1
Inf / (t> — at — b)*dt
a,beR [

4.4 Algorithme d’orthonormalsation de Gram-Schmidt

Théoreme de Gram-Schmidt.

Partant d’une famille (ug, ..., u,) supposée libre de E (par exemple une base), il existe une unique famille
(e1,...,ep) telle que :
o (e1,...,ep) est orthonormée;

e Vke{l,...,p}, Vect(er,...,ex) = Vect(uq,...,ug);
e Vke{l,...,p}, (er,vg) > 0.

Algorithme. Cette famille peut étre construite par I’algorithme suivant : Pour chaque k € {1,...,p}, on définit
e}, = ur —pr—1(ux) (ol pp_1 désigne la projection orthogonale sur Fj,_1 = Vect(e,...,ex_1)) et e = ”2—5‘”

k

Comme F},_; est connue par une base orthonormée, I’expression de la projection orthogonale est simple.

Remarque. La matrice de la famille (e1,...,e,) dans la base (u1,...,up,) de F, est triangulaire supérieure.
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5 |Formes linéaires sur un espace euclidien

5.1 Représentation des formes linéaires

Théoréeme de représentation des formes linéaires.

Soit ¢ une forme linéaire sur un espace euclidien E. Alors il existe un unique vecteur a € E tel que :
Vo € B, ¢(a) = (a,1)

En d’autres termes, en dimension finie, toute forme linéaire peut étre représentée a l’aide d’un produit
scalaire.

Remarque. Soit H un hyperplan. Alors il existe une forme linéaire non nulle ¢ telle que H = Ker . On applique a ¢
le théoréme précédent, et on a la définition suivante :

Définition. Lorsque H = Ker ¢, ou ¢ # 0, le vecteur a est orthogonal a '’hyperplan H = Ker ¢. On dit que a
est un vecteur normal a H.

Remarque. Les vecteurs orthogonaux a H sont alors les vecteurs colinéaires a a.
Corollaire. On conserve les notations précédentes.
a
Si E est muni d’une base orthonormée, et que a a pour coordonnées A = | : |, alors une équation de
2%
H est donnée par :
reH < ATX=0
= w1+ -+ apxr, =0
x1
ou X =

Ln

5.2 Distance a un hyperplan, a une droite

Théoréme.

Soit H un hyperplan de E, et a un vecteur normal de H. Alors pour tout z € F/, on a :

d(, H) = |<|6|L;l:ﬁ>|

Soit D un droite vectorielle de FE, dirigée par un vecteur a. Alors, pour tout « € E, on a :

d*(x, D) = |l«||* - d*(z, D*)
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6 Annexes

6.1 Annexe : projecteurs orthogonaux associés a une décomposition orthogonale de I'espace

Proposition. Soit E un espace euclidien, (F;)i<i<p nale sur Fj, c’est-a-dire la projection sur F;, de
une famille de p sous-espaces de E deux a deux direction @ F;. Alors :
orthogonaux. On suppose que la somme (qui est e

directe orthogonale) des F; est F :

p
p - .
E=QDF IdE:Elpi et, pour i # j, piop; =0
i=1 =

On définit, pour tout i, p; la projection orthogo-

6.2 Annexe : une démonstration astucieuse de l'inégalité de Cauchy-Schwarz

Inégalité de Cauchy-Schwarz. donc :

Pour tout x,y € E, on a : —llzl iyl < ez, y)
b b .
c’est-a-dire :

<
[zl < il y] lall gl < (@) et — el < — (o)

L’égalité a lieu si et seulement si z et y sont soit encore :
colinéaires.

=Mzl lyll < (z, ) et ]l Iyl = (=,y)
Preuve. . PORR YA ez 7 PR 52
. Sizou y est nul, Vinégalité est triviale. lcieééqm fournit I'inégalité annoncée, ainsi que le cas d’éga-

e On suppose z et y non nul. Calculons, pour ¢ = +1 :

2 |
Y
0 |— +e—
=l Iyl
_ < z +si z +€i> Remarque. Cette démonstration est assez peu connue
ll|l Nyl (||l lyll des correcteurs et interrogateurs des concours, et il
_ (z,y) n’est pas recommandé de 'utiliser au concours : on
lll {1yl lui préférera la version traditionnelle.
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Exercices et résultats classiques a connaitre

Calcul d’une borne inf avec un projeté orthogonal

On note F = R[X].

(a) Montrer que 'on définit un produit scalaire sur E en posant :

o= " pwoet d

+oo
(b) Calculer, pour p € N, I, = / tPe~t dt.
0

(¢) On considere k entier > 2. Calculer :

+o0 9
Inf / (t" —at —b) e " dt
a,beR [

La matrice de Gramm

Soit E un espace préhilbertien réel. Pour (uq,...,u,) famille de vecteurs de E, on note G(us, ...

de M, (R) dont le coefficient d’indice ¢, j est (u;|u;).

(a) Montrer que la famille (u1,...,up) est liée si et seulement si det G(uq,...,up) =0

,up) la matrice

(b) Montrer que, si (e1,...,e,) est une base d’un sous-espace vectoriel F' de E, alors, pour tout x € E :

B det G(ei, ..., ep,7)
d(x7F) - \/ detG(el,..-,ep)

Un orthonormalisation

On note E = R,[X], oun > 1.
(a) Vérifier que :

1
(P.Q) = / P(2)Q(x) da

-1

définit un produit scalaire sur F.

On note (eg, €1,...,e,) la base obtenue par orthonormalisation de la base (1, X, ...

(b) Pour tout entier k£ € {1,...,n}, on définit :

dk

— (=)

fr(X)

bl. Déterminer le degré de fy.
b2. Calculer (X*, fi) pour k € {1,...,n} et i€ {0,...,k—1}.
b3. En déduire que pour tout k € {1,...,n}, il existe un A\ tel que fr = Apeg.
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'Exercices du CCINP |

GNP 39.13

On note ¢2 I'ensemble des suites z = (zn)nen de nombres réels telles que la

s 2
serie E x,, converge.

1. (a) Démontrer que, pour = (Tp)nen € 2 et Y = (Yn)nen € 2, la
série anyn converge.

+oo
On pose alors (z|y) = Z TnYn-

n=0

(b) Démontrer que £? est un sous-espace vectoriel de ’espace vectoriel
des suites de nombres réels.

Dans la suite de I’exercice, on admet que (|) est un produit scalaire dans 2.
On suppose que £2 est muni de ce produit scalaire et de la norme euclidienne
associée, notée || ||.

3. On considere ’ensemble F' des suites réelles presque nulles c’est-a-dire
I’ensemble des suites réelles dont tous les termes sont nuls sauf peut-étre
un nombre fini de termes.

Déterminer F+ (au sens de ( |)).

Comparer F et (FJ-)J‘.

Grp 76

Soit E' un R-espace vectoriel muni d’un produit scalaire noté (| ).

On pose Vz € E, ||z|| = v/(z]|x).
1. (a) Enoncer et démontrer l'inégalité de Cauchy-Schwarz.

(b) Dans quel cas a-t-on égalité ? Le démontrer.
2. Soit E={f€C([a,b],R), Vx € la,b] f(x)> 0}
b b
1
Prouver que l’ensemble / f(&)de x / mdt, fe E} admet une

borne inférieure m et déterminer la valeur de m.

[310.6] Grp 77
Soit E un espace euclidien.
1. Soit A un sous-espace vectoriel de F.
Démontrer que (AJ-)J' = A.
2. Soient F et G deux sous-espaces vectoriels de F.
(a) Démontrer que (F +G)* = FLnGt.
(b) Démontrer que (FNG)" = F+ + G+,
Gip 79.23

Soit a et b deux réels tels que a<b.

2. Soit E le R-espace vectoriel des fonctions continues de [a, b] dans R.
b

On pose : ¥ (f,g) € E2, (flg) = / f(@)g(x)dz.

a
Démontrer que 1'on définit ainsi un produit scalaire sur E.

1
3. Majorer / Vxze *dzx en utilisant I'inégalité de Cauchy-Schwarz.
0

Grp 80

Soit E l’espace vectoriel des applications continues et 27-périodiques de R
dans R.

2m

1. Démontrer que (f | g) = — f(t) g (t) dt définit un produit scalaire

27T 0
sur F.

2. Soit F' le sous-espace vectoriel engendré par f : z + cosz et g : x —

cos (2z).

Déterminer le projeté orthogonal sur F' de la fonction u : z — sin® z.

On définit dans M3 (R) x M3 (R) l'application ¢ par : ¢ (A, A") = tr (ATA),
ou tr (AT A’) désigne la trace du produit de la matrice AT par la matrice A’.

Grp 81

n
(=
N
(-]
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On admet que ¢ est un produit scalaire sur Ms (R) .

a b
Onnote]—':{( b a)’ (a,b)€R2}.

1. Démontrer que F est un sous-espace vectoriel de M (R).

2. Déterminer une base de FL.

3. Déterminer le projeté orthogonal de J = ( 1 1 ) sur FL .

4. Calculer la distance de J a F.

Soit E¥ un espace préhilbertien et F' un sous-espace vectoriel de E' de dimen-
sion finie n > 0.

Grp 82

On admet que, pour tout x € FE, il existe un élément unique yy de F tel que
x — yo soit orthogonal & F' et que la distance de x & F soit égale a ||z — yoll.

! /
Pour A = (z Z) et A= (i, Z,), on pose (A | A') = aa’ +bb' +cd +dd'.

1. Démontrer que (.|.) est un produit scalaire sur My (R).

1
-1 2
toriel F' des matrices triangulaires supérieures.

Soit n € N*. On considere E = M,,(R) Pespace vectoriel des matrices carrées

d’ordre n.
On pose : V(A,B) € E?, (A,B) = tr(ATB) ou tr désigne la trace et AT

2. Calculer la distance de la matrice A = ( ) au sous-espace vec-

Grp 92

désigne la transposée de la matrice A.
1. Prouver que (,) est un produit scalaire sur E.

2. On note S, (R) ensemble des matrices symétriques de E.
Une matrice A de E est dite antisymétrique lorsque A7 = —A.
On note A,,(R) I'ensemble des matrices antisymétriques de E.
On admet que S, (R) et A, (R) sont des sous-espaces vectoriels de E.

(a) Prouver que E = S, (R) ® A,(R).
(b) Prouver que A, (R)* = S,(R).

3. Soit F' 'ensemble des matrices diagonales de FE.
Déterminer F-.

'Exercices |

Soit E un espace euclidien muni d’une base orthonormée B = (ey,...,ey).
Montrer que, pour f € L(FE) :

Montrer que, pour zq, ..

|x1+..+xn|<\/ﬁ1/aj%+.+l‘%

Ty €ER:

. a b ’ a v / / / / !
SiA= e d et A’ = o d , alors on pose (A4, A’) = aa’ + bt +cd’ +dd'.

(a) Démontrer que (, ) est un produit scalaire sur My (R).

1
-1 2
riel F' des matrices triangulaires supérieures.

R* est muni de sa structure euclidienne canonique. Soit F' le sous-espace vec-
toriel défini par :

(b) Calculer la distance de la matrice A = ( ) au sous-espace vecto-

F:{($1,$2,m3,$4) € R4/l'1 +]}2+I3+3)4:O}

n
(=
N
(-]
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Déterminer la matrice, dans la base canonique, de la projection orthogonale
sur F.

r+y—z—t=0

définit un plan P de R%.
r+3y+z—-t=0

(a) Montrer que le systéme {

(b) Construire une base orthonormale (¢1,£2) de P.

(c) Ecrire la matrice dans la base canonique de R* de la projection ortho-
gonale sur P, puis de la symétrie orthogonale par rapport a P.

(d) Soit v =(1,1,1,—1) : calculer d(v, P).

Montrer que : ,
(P.Q)~ [ -nPOQ@a
est un produit scalaire sur Ry[X] et en déterminer une base orthonormée.
Sur Ro[X], on définit :
(P,Q) = P()Q(L) + P()Q'(1) + P"(1)Q" (1)
(a) Vérifier que (-, -) est un produit scalaire.
(b) Trouver une base orthonormale (Py, P1, P») telle que deg(Py) = k.

(c) Déterminer la projection orthogonale de X2 sur Ry[X].

Petits problemes d’entrainement

(51019 &

On note E = (?(N,R) I'ensemble des suites réelles (u,,), telles que la série
S~ u? converge. Pour u,v € E, on pose :

+oo
<ua U> = Z UpUn
n=0

(a) Montrer que E est un R-espace vectoriel.
(b) Mountrer que (-,-) définit un produit scalaire sur E.

On note F le sous-espace des suites nulles a partir d’un certain rang, et
ve ENF.

(¢) Donner un exemple de suite v = (vy, ).
(d) Déterminer F+. Est-ce que F et F* sont supplémentaires ?

(e) On pose G = Vect(v). Comparer F+ + Gt et (FNG)* .

310.20] 4

On munit M,,(R) de son produit scalaire canonique.
(a) Montrer que S,, © A,, = M, (R).
(b) Calculer la distance d(A,S3(R)), ou :

1
A=10
1

=N N
W =~ W

Soit n € N* et E euclidien de dimension n. On considére B = (e, ...
famille de vecteurs unitaires tels que :

,€n) UNE

i#j = llei—el =1

Montrer que B est une base de E.

On note B I'ensemble des suites réelles bornées, et I’ le sous-espace vectoriel
de B formé des suites nulles a partir d’un certain rang.

a ontrer que l'on demnnit un prodult scalaire sur en posant :
Mont I’on définit duit scalai B t
+oo

(o) =3 5

n=0

n
(=
N
(-]
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(b) Déterminer F-.

(c) Est-ce que Fit=F?

Soit A une partie de E espace préhilbertien.
(a) Montrer que A+ est une partie fermée.

(b) Montrer que A et A ont le méme orthogonal.

Soit E un espace vectoriel normé réel, et S la spheére de centre 0 et de rayon 1,
c’est-a-dire ’ensemble des vecteurs de norme 1.

(a) Est-il vrai que, pour z,y € S avec x # y :

VA€]0,1, =Nz +Ay¢ S?

(b) Et si F est un espace préhilbertien, et que la norme est la norme eucli-
dienne ?

Soit E' euclidien, a,b deux vecteurs unitaires de E. On définit f ’endomor-
phisme de FE :
f:xz—=z—{a,z)b

(a) A quelle condition f est bijectif ?

(b) A quelle condition f est diagonalisable ?

Soit F euclidien de dimension n > 2, a,b deux vecteurs unitaires de E. On
définit f par :
f o xe—{a,z){b,x)

Déterminer le maximum et le minimum de f sur la sphére unité de E.

Soit A € Mn(R)

(a) Comparer Ker(A) et Ker(AT A).
(b) Comparer Im(A) et Tm(AAT).

Soit A € M, (R) telle que A? = 0.
(a) Montrer que Ker(AT + A) = Ker(A) NKer(AT).
(b) En déduire :
AT + A€ GL,(R) «= Im(A) = Ker(A)

Soit E un espace préhilbertien réel, (-,-) son produit scalaire et || - || la norme
euclidienne associée. On s’intéresse a p projecteur de E.

(a) Montrer que, si p est un projecteur orthogonal, alors :
Vo € B, [p(z)] < ||z|
(b) Réciproquement, on suppose que, pour tout « € E, ||p(x)| < ||=]|-
bl. Pour z € Imp, y € Kerp et t € R, montrer que :
0 < 2t(z,y) + [lyll?

b2. En déduire que le projecteur p est orthgonal.

Soit E = R[X] muni du produit scalaire défini par :

1
(P.Q) = / P(HQ() dt

On note ¢, la projection orthogonale sur R,[X], Py = 1 et, pour n € N*,
P, = X" — gu_1(X").
(a) Justifier que (P,), est une famille libre.

(b) Montrer que, pour tout n,k € N :
k 75 n — <Pk-,Pn> =0

n
(=
N
(-]
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(¢) Soit n > 2. Montrer que P,, — X P, _; est combinaison linéaire de P,,_;
et Pnfg.

Pour k € N~ {0,1}, calculer :

—+oo
— Inf k _ _ p\2,—t
mg a,zPeR/(; (t" —at —b)e”"dt

E est un espace euclidien de dimension n pour le produit scalaire (-,-) et
u € L(FE) tel que :

Ve e E, (u(x),z) =0
Montrer que Ker u et Im u sont supplémentaires orthogonaux et que le rang
de u est pair.

Soit A = (a; ;) € My, (R) telle que a; ; =

Soit E un espace préhilbertien, (-,-) son produit scalaire et || - || la norme
euclidienne associée. On suppose qu’il existe n € N* et ey, ..., e, des vecteurs
unitaires tels que :

1

o1 Montrer que det(A) > 0.

n
Vz € E, ||z||* = Z(x,ek>2
k=1
Est-ce que la famille B = (eq,...,e,) est nécessairement une base orthonor-

male de E'?

On munit 'espace E = C%([a, b],R) du produit scalaire :

b
(f.9) = / F(Dg(t)

Pour n € N, on note p,, : t+— t" et P I’ensemble des fonctions polynomiales

sur [a, b].

(a) Justifier que la famille (p, ), est totale, c’est-a-dire qu’elle engendre un
espace vectoriel dense dans F.

(b) Déterminer 'orthogonal de P.

Soit E euclidien de dimension n > 1 et z1, ..
trer qu’il est impossible d’avoir :

.y Tp4o des vecteurs de E. Mon-

Viaj7 <37i,37j> <0

Soit p un projecteur d’un espace euclidien E. On suppose que :
Ve € E, (p(z),z) 20

Montrer que p est un projecteur orthogonal.

On note E I'ensemble des fonctions de classe C! sur [0, 1]. On définit sur Ex E
I’application ¢ par :

1
o9 = [ (fg+9)
0
On définit les deux ensembles :

V = {feFEtq f(0)=f(1)=0}
W = {feEtq f"existeet f' = f}
(a) Montrer que ¢ est bien un produit scalaire sur E.

(b) Montrer que W est un sous-espace vectoriel de F de dimension finie, et
en donner une base.

(¢) Montrer que V est le supplémentaire orthogonal de W dans E. Donner
I’expression de la projection orthogonale sur W.

(d) Pour (a, ) # (0,0), on définit :
Eop={f€Etq f(0)=a, f(1) =5}

1
Calculer Inf 24 ’2).
acuerfega)ﬁ </0 (f~+

n
(=
N
(-]
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