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Dans tout le chapitre, sauf mention contraire, E est un espace euclidien et (-,-) est son produit scalaire.

Adjoint d’'un endomorphisme d’un espace euclidien

Définition, matrice de I’adjoint en base orthonormée

Définition. Soit v € L(E). Il existe un unique endomorphisme u* € L(E) tel que :

Va,y € E, (u(w),y) - <:z:,u*(y)>

L’endomorphisme u* s’appelle 'adjoint de u.

Proposition. Soit B une base orthonormée de E, et u € L(E). Alors :

Mat (u*, B) = Mat(u, B) "

Remarque. L’hypothése base orthonormée est essentielle ici.
Corollaire. u et u* ont méme trace, méme déterminant, méme polyndéme caractéristique, méme spectre.

Remarque. En revanche, ils n’ont pas pas les mémes vecteurs propres.

Propriétés

Proposition. Pour u,v € L(E), \,p €R:
o (Au+ pv)* = ™ + po*
e (W)*=u
e (uov)* =v*ou*

e Si u est bijectif, u* aussi et (u*)~t = (u=1)*

Proposition. Soit u € L(FE) et F un sous-espace de E. Si I est stable par u, alors F- est stable par u*.

Endomorphismes autoadjoints d’un espace euclidien

Définition, matrice en base orthonormée

Définition. Soit E un espace euclidien et u € L(F). On dit que u est autoadjoint lorsque u* = u, i.e. :

Vo,y € E, <u(x)ay> - (x,u(y)}

On note S(E) I'ensemble des endomorphismes autoadjoints de E.

Remarque. On qualifie parfois les endomorphismes autoadjoints (i.e. u* = u) de symétriques, mais on évitera cette
terminologie, car il n’y a aucune raison que ¢a soit une symétrie (i.e. uou = Idg).

Proposition. Soit u endomorphisme autoadjoint de E et F' un sous-espace vectoriel de E. Si F' est stable par u,
alors F* est aussi stable par u.

Proposition. Soit E espace euclidien de dimension n, et u € L(E). Fixons B une base orthonormée de E.
Alors :
u € S(E) < Mat(u,B) € S, (R)
c’est-a~dire que u est autoadjoint si et seulement si sa matrice en base orthonormée est symétrique.

Remarque. L’hypothése base orthonormée est essentielle ici.

1
Corollaire. La dimension de S(E) est %
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Proposition. Soit p un projecteur (i.e. pop = p). Alors p est un projecteur orthogonal (i.e. Kerp L Imp) si et
seulement si p est autoadjoint.

2.3 Le théoreme spectral

Théoréeme spectral - version endomorphisme.

Soit E espace euclidien et u € L(E). Alors :

w€S(E) «—= E= (O E\(u)
AESP(u)

<= 3B base orthonormée t.q. Mat(u, B) diagonale

Remarque.

e On dit parfois que tout endomorphisme autoadjoint d’une espace euclidien est orthodiagonalisable.

e On note bien que les espaces propres des endomorphismes autoadjoints sont orthogonaux.

Théoréeme spectral matriciel.

Soit A € M,,(R). Alors :

A € S, (R) < A est orthogonalement diagonalisable

c’est-a-dire que 'on peut écrire :
A=PDPT

ou D est une matrice diagonale et P une matrice orthogonale, c’est-a-dire une matrice dont les colonnes
forment une base orthonormée de M,,1(R).

Remarque. L’étude des matrices orthogonale est menée au § 4. On y montre que les matrices orthgonales sont les

matrices de passage entre bases orthonormées, et qu’on les inverse en transposant.

2.4 Endomorphismes autoadjoints positifs, définis positifs

Définition. Soit u € S(F) un endomorphisme autoadjoint. On dit qu'’il est positif lorsque :
Ve € E, (z,u(z)) >0
On dit qu’il est défini positif lorsque :
Ve e E~{0g}, (z,u(x)) >0
On note S*(FE) (resp. STT(E)) I'ensemble des endomorphismes autoadjoints positifs (resp. définis positifs).
Remarque.
e Pour montrer que u est défini positif, on peut aussi montrer :

x < 0
Ve e, {<5E7U(CC)>=O = =0

e On ne qualifie un endomorphisme de positif que s’il est déja autoadjoint.

o ST(E) et STH(E) sont stables par I'addition (mais ce ne sont pas des espaces vectoriels).
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Définition. Soit A € S,,(R) une matrice symétrique. On dit qu’elle est positive lorsque :
VX € Mu1(R), XTAX >0
On dit qu’elle est définie positive lorsque :
VX € M (R)~ {0}, XTAX >0

On note S;F(R) (resp. S;7T(R)) 'ensemble des matrices symétriques positives (resp. définies positives).
Remarque.
e Pour montrer que A est définie positive, on peut aussi montrer :
XTAX >0

VX € M (R),
1R {XTAX—O — X =0

¢ On ne qualifie une matrice de positive que si elle est déja symétrique.

e SH(R) et S (R) sont stables par I’addition (mais ce ne sont pas des espaces vectoriels).

Caractérisation spectrale - version endomorphisme.

Soit u € S(F) un endomorphisme autoadjoint. Alors :

ueST(E) < Sp(u) CRy et ueSTH(E) « Sp(u) CRL

Caractérisation spectrale - version matricielle.

Soit A € §,,(R) une matrice symétrique. Alors :

A€eSI(R) < Sp(A4)CR: et AeSIT(R) « Sp(4) CR:

Isométries d’un espace euclidien

Définition

Définition. Soit « un endomorphisme de E. On 'appelle isométrie vectorielle lorsqu’elle conserve les normes :
Ve € B, |lu(z)|| = ||
On note O(E) P'ensemble des isométries vectorielles.

Remarque. On trouve aussi, dans la littérature, la terminologie automorphisme orthogonal.

Exemple. Les symétries orthogonales sont des isométries vectorielles.
Les projecteurs orthogonaux ne sont pas, en général, des isométries vectorielles.

Caractérisations

Proposition. 1’endomorphisme u est une isométrie vectorielle si et seulement s’il conserve le produit scalaire,
c’est-a-dire :
Vr,y € E, (u(z),u(y)) = (z,y)

Proposition. L’endomorphisme u est une isométrie vectorielle si et seulement si 'image d’une base orthonormée
de FE par u est une base orthonormée de E.

Proposition. L’endomorphisme u est une isométrie vectorielle si et seulement si :
*
uou* =1dg

ou encore, c’est équivalent, u* o u = Idg. Ainsi, les éléments de O(E) sont les automorphismes de E dont
I'inverse est ’adjoint.

4/ 17 http://mpi.lamartin.fr 2025-2026


http://mpi.lamartin.fr

o
N
Q M Pl 320. Endlomorphismes remarquahles des espaces euclidiens

Propriétés

Proposition. Toute isométrie vectorielle est bijective : ¢’est un automorphisme de FE.
Proposition. Soit u € O(E). Alors det(u) = £1

Remarque. Attention! la réciproque est bien-sir fausse.

Le groupe O(F)

Proposition. O(FE) est un sous-groupe de (GL(E), o). On appelle O(E) le groupe orthogonal de E.

Définition. On note SO(E) = {u € O(F), det(u) = 1}. C’est un sous-groupe de O(E), appelé le groupe
spécial orthogonal.
Ses éléments sont les isométries vectorielles directes.
Les éléments de O(F) ~ SO(F) sont les isométries vectorielles indirectes.

Matrices orthogonales

Définition

Définition. On dit que A € M,,(R) est une matrice orthogonale si et seulement si :
AAT =1,

On note O, (R) (ou parfois O(n)) ensemble des matrices orthogonales de M, (R).

Caractérisations

Proposition. Soit A € M,,(R). Sont équivalentes :

(¢) A est une matrice orthogonale;

(ii) ATA =1, i.e. les colonnes de A forment une base orthonormée de M, (R);
(iii) A est inversible et A™1 = M T ;

(iv) AAT =1, i.e. les lignes de A forment une base orthonormée de M, (R);
Proposition. Soit u € L(E) et B une base orthonormée de E. Alors :

u € O(F) < Mat(u,B) € O,(R)

Remarque. L’hypothése base orthonormée est essentielle ici.

Proposition. Soit B une base orthonormée de E, et B’ une famille de n vecteurs de E. Alors :
B’ est une base orthonormée <= Matg(B') € 0, (R)

et Matg(B’) est la matrice de passage de B a B'.

Propriétés

Proposition. Soit A € O,(R). Alors :
o A est inversible, et A~ = AT

o detA==+1
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Le groupe O,(R)

Proposition. O, (R) est un sous-groupe de (GL,(R), x). On appelle O,,(R) le groupe orthogonal d’ordre n.

Définition. On note SO, (R) = {4 € O,(R), det(A) = 1} (parfois aussi noté O, (R)). C’est un sous-groupe de
0,,(R), appelé le groupe spécial orthogonal d’ordre n.
Ses éléments sont les matrices orthogonales directes (ou positives).
Les éléments de O, (R) \ SO, (R) sont les matrices orthogonales indirectes (ou négatives).

'Orientation

Orientation d’un espace vectoriel réel

Fixons E un espace vectoriel réel de dimension finie.

Remarque. Si B et B’ sont deux bases de E, on sait que dets(B’) est un réel non nul.
dets(B') désigne le déterminant de la famille des vecteurs de B', exprimés en coordonnées dans la base B, c’est-a-dire
le déterminant de la matrice de passage de B vers B’.

Définition. On dit que B a la méme orientation que B’ lorsque detg(B’) > 0.

Proposition. «a la méme orientation » est une relation d’équivalence sur I’ensemble des bases de E. Il y a
exactement deux classes d’équivalences.

Définition. Orienter FE, c’est faire le choix de 'une des deux classes d’équivalence pour la relation « a la méme
orientation ». On fait en général ce choix a travers le choix d’une base particuliere, un représentant de la
classe choisie. Les bases de cette classe sont dites directes, les autres indirectes.

Exemple. En général, on oriente R en choisissant la base canonique directe.

Orientation d’un hyperplan

Définition. Soit E un espace euclidien orienté, et H un hyperplan de E. On oriente H par le choix d’un vecteur
a

normal a : une base orthonormale (eq,...,e,_1) de H est directe lorsque (el, e, n1, W) est une base
a

directe de E.

Espace euclidien orienté, produit mixte

Proposition. Soit E un espace euclidien orienté et x1,...,x, € E.
Le déterminant de la famille (x1,...,2,) est le méme dans toutes les bases orthonormales directes de E.
On peut donc noter :

det(x1,...,2,)
pour désigner detg(x1,...,2,), ol B est une base orthonormée quelconque de E.
Remarque. On trouve aussi la notation [z1,...,x,], et I'appelation produit mizte.

Remarque. On peut reformuler le résultat précédent en disant que, pour B et B’ deux bases orthonormées directes

de F :
detp = detp:
Proposition. Dans le méme contexte, si u € L(F) et z1,x9,...,2, € E :
[w(zr), u(za),. .., u(zy,)] = det(u) X [z1,22,...,Ty]
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6 Etude des isométries vectorielles

6.1 Isométries vectorielles en dimension 2

6.1.1 Etude des isométries vectorielles directes

Théoréeme.
. . _ (cosf —sinf
Soit M € SO2(R). 1l existe 6 € R tel que M = <sin9 cos 0 >
Corollaire.
o L’application: R: R — SO2(R) est un morphisme surjectif de groupes de (R, +)

0 — R(9)= (
dans (SO2(R), X). Son noyau est 2wZ.

cosf —sin 9>

sinf  cos6

o L’application: U — SO3(R) est correctement définie, et est un isomorphisme de groupes
VBN (cos& —sin 9)
sinfd cosf
de (U, x) dans (SO2(R), x).

Corollaire. (SO2(R),+) est un groupe commutatif.
Remarque. C’est une propriété tout a fait spécifique a la dimension 2.

Proposition. Soit F un espace euclidien orienté de dimension 2. Si u € SO(FE), il existe 6 € R, unique modulo
27, tel que la matrice de u soit, dans n’importe quelle base orthonormée directe de E :

cos —sind
sinf  cosf
Définition. On dit que u est la rotation vectorielle d’angle orienté 6.

6.1.2 Mesure d’un angle orienté entre deux vecteurs non nuls

Définition. Si z,y sont deux vecteurs unitaires de F un espace euclidien orienté de dimension 2, alors il existe
une unique rotation u € SO(E) telle que y = u(x).
Si z,y deux vecteurs non nuls, on peut alors appeler mesure de 1’angle orienté (z,y) tout réel 4 tel que
la rotation d’angle 6 envoie ﬁ sur ﬁ
On a les relations :

(,y) = llzll lyll cosO et [z, y] = [|=[ [y]| sin®

6.1.3 Etude des isométries vectorielles indirectes

Proposition. Soit E un espace euclidien orienté de dimension 2. Soit u € O(F) ~ SO(F) et B une base
orthonormée directe de E.

o u est une réflexion, c’est-a-dire une symétrie orthogonale par rapport a une droite.

o il existe € R tel que :

—sinf cosf

Mat(u, B)) = ( cos 6 sin9>

[4
et u est la réflexion par rapport a la droite dirigée par (Z?S 3)
2
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6.2 Réduction des isométries en dimension n

Lemme. Soit u € O(F)
« Si F un sous-espace stable par u, alors F* est stable par u.
e Il y a au moins un plan ou une droite stable par u.

o Les seules valeurs propres (réelles) possibles pour u sont 1 et —1.

Théoréme.

Soit E un espace euclidien, u € O(E). Il existe une base orthonormée B de E, des entiers m,p, q et des
réels 04, ...,0,, tels que, par blocs :

Ry,

Mat(u, B) = ' Ry

Remarque. Siu € SO(FE), alors Dentier p est pair.
Version matricielle. Soit M € O,(R). Alors il existe P € O,(R) et @ de la forme ci-dessus telles que :

M = PQP~!' = pPQPT

6.3 Cas particulier de la dimension 3

Proposition. Soit E un espace euclidien de dimension 3, u € SO(E). Il existe une base orthonormée B de E et
0 € R tels que :

cosf) —sinf 0
Mat(u,B) = [ sinf  cos@ 0
0 0 1

Remarque.
o Contrairement au cas de la dimension 2, la forme de la matrice de u dépend fortement de la base choisie.

« Sil’on écarte le cas ott u = Id g, on constate que Vect(ez) est la droite des vecteurs invariants par u. F = Vect(e3)™,
orienté par es, est stable par u, et 'endomorphisme induit ur est une rotation vectorielle d’angle 6.
On dit que u est la rotation d’axe dirigé et orienté par ez et d’angle 6.

o Le programme officiel indique que « la pratique du calcul des éléments géométriques d’un élément de SO3(R) n’est
pas un attendu du programme ».

e On doit néanmoins savoir trouver ’axe d’une rotation (c’est F1(u) = Ker(u — Idg)), et dire que ’angle vérifie
2cosf + 1 = tr(u), ce qui donne I'angle au signe prés.

7 | Annexes

7.1 Annexe : I'adjoint est un endomorphisme

Définition. Soit v € L(E). Il existe un unique endo- | Preuve.
morphisme u* € ﬁ(E) tel que : e Tout d’abord, pour tout y € E fixé, par bilinéarité du
produit scalaire et linéarité de u, x — (u(z),y) est une
Vae,y € E, (u(x),y) = (z,u*(y)) forme linéaire. Alors, par le théoréme de représentation
des formes linéaires, il existe un unique vecteur a tel que :
L’endomorphisme u* s’appelle I'adjoint de . Vz € E, (u(z),y) = (x,a)
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et on peut noter u*(y) ce vecteur a.
On a montré que u* est bien défini, et & valeurs dans E.

¢ Montrons maintenant la linéarité de u*.
Soit y1,y2 € E, a1,a2 € R. Pour tout € E, on a :

(z,u"(1y1 + azyz) — a1u”(y1) — az2u”(y2))

= (z,u"(c1y1 + azy2)) — ar{z,u”(y1)) — az(z, u* (y2))
par bilinéarité

= (u(z), cay1 + aay2) — ca{u(z), y1) — cz({u(z), y2)
par définition de u*

= (u(z), 1y1 + a2y2 — a1y1 — azy2)
par bilinéarité

= (u(=), 0)

=0

Donc u*(a1y1 + agy2) — ar1u*(y1) — asu* (y2) est ortho-
gonal & tout vecteur de E, c’est donc le vecteur nul :

u*(a1y1 + a2y2) = aru™(y1) + azu™(y2)

7.2 Annexe : démonstration du théoréeme spectral

Lemme 1. Soit E espace euclidien de dimension > 1,
et u € S(E) un endomorphisme autoadjoint de E.
Alors Sp(u) # @.

Remarque. Il s’agit bien du spectre de u en tant qu’en-
domorphisme de E, donc des valeurs propres réelles
de u.

Preuve.

o Notons B une base orthonormée de E et S = Mat(u, B)
la matrice (symétrique réelle) de u dans B. Le polynéme
caractéristique x g est scindé dans C. Il existe donc A € C
valeur propre de S vue comme matrice dans My (C),

z1

donc il existe Z = € My, 1(C) non nulle telle que :

Zn
SZ =\Z
On a alors, d’une part :
Z'sz2=7"xz
=)Z'z
= A(ZF121 + - + Znzn)
= Az + o+ [zl?)
et d’autre part :
Z'S82=7"5Z car S est réelle
=57'z
=37z
=X(lz1]* + -+ |2nl*)

Comme Z # 0,0ona |z1|2+--+|zn|? #Oet donc A = X :
AeR.

O

Remarque.
propres de S sont réelles.

On a méme montré que toutes les valeurs

Lemme 2. Soit E espace euclidien de dimension > 1,
et v € S(E) un endomorphisme autoadjoint de E.
Alors u est diagonalisable.

Preuve. On raisonne par récurrence forte sur la dimension

de E.

2025-2026

e Si E est de dimension 1, u est bien-siir diagonalisable.

e Soit n > 2, on suppose que le résultat est vrai dans tout
espace euclidien de dimension < n — 1. Soit E un espace
euclidien de dimension n et u € S(E).
D’apreés le lemme 1, il existe A € R valeur propre de u.
L’espace propre Ey(u) est stable par u et u est autoad-
joint, donc 'orthogonal F' = E (u)L est aussi stable par
u.
E étant de dimension finie, dim(F) = n —dim(F) (u)) <
n — 1. On applique ’hypotheése de récurrence a ’endo-
morphisme induit ug, qui est bien autoadjoint puisque
u l’est. Ainsi up est diagonalisable.
Mais ug, (v) = Aldg, (u) (?st aus.si diagonalisable et
E = F @ FE)(u) donc u est diagonalisable.

e On a montré le résultat, par récurrence.

O

Lemme 3. Soit E espace euclidien, et u € S(E) un
endomorphisme autoadjoint de E. Soit A, i deux
valeurs propres (réelles) distinctes de w. Alors
E\(u) L E,(u).

Preuve. Soit x € Ex(u) et y € E,(u).
On calcule d’une part :

(u(z),y) = (Az, y)
=Xz, y)
et d’autre part :
(u(z),y) = (x,u(y)) car u autoadjoint
= (2, ny)
= u=z,y)
Comme A # p, c’est que (z,y) = 0. O

Théoréme.

Soit E espace euclidien et u € L(E). Alors :

D Ex(w)

AESP(u)

ueS(F) < E=

<= dB base orthonormée

t.q. Mat(u, B) diagonale

Preuve. Notons (i), (i) et (i) ces trois propriétés.

http://mpi.lamartin.fr 9/17


http://mpi.lamartin.fr

SMPI

320. Endlomorphismes remarquahles des espaces euclidiens

(i) = (1)
Par le lemme 2, on a déja E = @ Ey(u).
AeSp(u)
Par le lemme 3, les espaces propres sont deux a deux
orthogonaux. Le résultat est donc acquis.

Notons A1,...,Ap les valeurs propres deux a deux dis-

tinctes de w. On considére, pour tout @ € {1,...,p},
B; une base orthonormée de Ej, (u). Notons alors B la

,Bp). Comme E = @ E\(u),
AESp(u)

concaténation (B, ...

B est une base orthonormée de E et on a, par blocs :
Aln, 0
Mat(u, B) = )
0 Apln,
qui est bien diagonale.
Notant S = Mat(u, B), ona ST = S car S est diagonale,
et donc u* = u car B est orthonormée.

O

7.3 Annexe : une autre démonstration du théoréme spectral

Lemme 1. Soit F espace euclidien de dimension > 1,
et v € S(E) un endomorphisme autoadjoint de E.

Alors Sp(u) # @.

Preuve. On note ¢ : x +—>

(u(z), z).

e Comme u est linéaire en dimension finie, elle est conti-
nue. Le produit scalaire étant continu, ¢ est continue.
Sur la sphére unité S = S(0, 1), fermée bornée en dimen-
sion finie, donc compacte, ¢ admet donc un maximum
atteint en xg :

Jxg €S, Vx € S, é(x) < ¢p(z0)

Notons H = Vect(zo)~, et fixons y € H.
e Pour t € R, on note :

Y(t) =

Pour tout t € R :

¢ ((cost)zo + (sint)y)

P(t) = ¢((cos t)zo + (sint)y)

< ¢(xo) par définition du max

=(0)

donc la fonction réelle de variable réelle ¥ admet un
maximum en 0.

7.4 Complément : une autre démonstration du

On calcule :
() = (u((cost)mg + (sint)y), (cost)zo + (sint)y)
= (cos? t)p(zo) + (sint)?p(y) + (costsint)(u(zo),y)
+ (costsint)(u(y), zo)
par linéarité de u et bilinéarité du p.s.

— (cos® )b(wo) + (sin t)?(y) + (sin 2¢) (u(zo), y)

car u autoadjoint

= (—2sintcost)p(xg) + (2 costsint)p(y)
+ (2 cos 2t)(u(zo), y)

Comme ¢ admet un maximum en ¢t = 0, c’est que :
(u(zo), y> =0

On a montré que, pour tout y € H, (u(zo),
u(xo) € Ht. Mais H = Vect(z¢), donc :

y) = 0. Ainsi

u(zo) € Vect(zg)

Ainsi, il existe A € R tel que u(xzg) = Azp. On a montré
que xg est vecteur propre de u, et trouvé A une valeur
propre de u.

O

théoreme spectral

Lemme 0. Soit F' un espace euclidien, v € S(F') un
endomorphisme autoadjoint de F'. Soit

Q= (X —a)®+pcR[X]

ou B > 0, un polynome irréductible, écrit sous sa
forme canonique.
Alors Q(v) est autoadjoint, défini-positif.

Preuve.
e Le polynéme d’endomorphisme est :
Q) = (v—aldp)? + Bldr
donc
Q)" = ((v - aldp)? + fldr)"
= (v* — ald})? + BId%
= (v—oaldp)? + Bldp
car v et Idp autoadjoints

=Q(v)

10/17
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Ainsi Q(v) est autoadjoint.
Pour z € E, on calcule :
Q) (), z)
(((v — aIdF + ,BIdF)(x),:c)
(((v—oddp) o (v — aldp))(z),z) + Bz, z)
={(v—oldF)(z), (v — oldp)(z)) + B(z, =)
car v — aldp autoadjoint
= [I(v = aldp)(@)|* + Bll=||*
>0

Ainsi Q(v) est autoadjoint positif.
Soit x € E tel que (Q(v)(z),z) = 0. C’est donc que
(v — aldp)(x)]|? + B||z||> = 0 par le calcul précé-
dent. Il s’agit d’une somme nulle de termes positifs, donc
B||z||2 = 0 et donc ||z|| = 0 car 8 > 0. Ainsi z = 0.
Finalement, on a montré que Q(v) est autoadjoint défini
positif.

O
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Lemme 1. Soit E espace euclidien de dimension > 1,
et v € S(E) un endomorphisme autoadjoint de E.
Alors Sp(u) # @.

Preuve. Intéressons-nous a la décomposition en produit de po-
lynoémes irréductibles du polynéme minimal 7, de u. Supposons
que cette décomposition comprenne un termes irréductibles de
degré 2, c’est-a-dire qu’il existe @ et P tels que :

Ty = QP
oﬁQ:(X—a)2+ﬁavecﬁ>O.Onadonc:

Oz(m) = mu(u)

=Q(u) o P(u)

Notons F = Im(P(u)). Comme u et P(u) commutent, F est
stable par u. On note v = up ’endomorphisme induit par u
sur F. L’égalité précédente s’écrit :

Vz € E, Q(u)(P(u)(z)) =0
et donc, comme chaque y € F s’écrit P(u)(z) ,

Vy € F, Q(v)(y) =0

Mais le lemme 0 indique que Q(v) est autoadjoint défini po-
sitif, donc pour tout y € F, si y # 0, alors (Q(v)(y),y) > 0.
———
=0
C’est donc que tout y € F = Im(P(u)) est nul, et donc que
Ceci contredit la minimalité de 7. C’est donc que 7, n’a pas
de facteur irréductible de degré 2, donc est scindé dans R[X],
ce qui justifie la propriété annoncée. |

7.5 Annexe : normes subordonnées et rayons spectraux

On considére E un espace euclidien, on note || - || la
norme euclidienne, et || - || la norme d’opérateur sur
L(E), subordonnée & || - ||.

Lemme. Pour tout x € F,

[zl = Sup (z,y)
lyll<1

Preuve.

e Pour tout y tel que ||y|| <1, on a:

(z,y) < lz|l]lyl Cauchy-Schwarz

< |z indépendant de y

donc Sup (z,y) < ||z
llyll<1
T
e Lecasouy= W fournit un cas d’égalité dans I'inéga-
T
lité précédente, donc :

Sup (z,y) = ||z||
llyll<1

Proposition. Pour u € L(E), ||u*]| = ||ul|-

Preuve. Siu=0gg), alors u* = 0z (p) et 'égalité est triviale.
On suppose dorénavant u # Oz (g)-

e Pour tout x € E :

lu(@)l* = (u(@), u(z))

(u*(u(z)), x) par définition de I’adjoint

|u* o u(z)|| ||z|| par Cauchy-Schwarz

<

< Jlu* ou|l |zl [lz]| par déf. de || - I

< () [l H:/v||2 par sous-multiplicativité
que 'on peut réécrire :

(@) < /Ml el {l2l

On a donc, par définition de la norme d’opérateur :

lleelll < A/l e

et donc, comme [|u| # 0 :

Vil < il

c’est-a-dire, en élevant au carré :

el < ™l

2025-2026

e En appliquant ce qui précede a u™, on a aussi :
™Il < lw™ =

= [lull car u** = u

On a montré que [|ul| = ||u*||.

Définition. Pour u € £(E), on définit le rayon spec-

tral :

p(u) = Max{[A[, A € Sp(u)}

Proposition. On dispose des résultat suivants :

1. Soit v € S(E). Alors :

_ gup (Bu(@)
Masx (Sp(w)) = Swp =1

2. Si de plus u € ST(E),
Max (SP(U)) = p(u) = [|ul|

3. Pour u € L(E) :

lull* = llu* o ull = p(u* o u)

Preuve.

1. Notons A1 < --- < A les valeurs propres de u, classées
par ordre croissant, répétées selon leurs mulitiplicités.
Comme u est autoadjoint, il existe une base orthonor-
mée B = (e1,...,en) de vecteurs propres, associés aux
valeurs propres Ai,...,An.

Rappelons qu’en base orthonormée, les coordonnées de
z sont ((z,e1),...,{x,en)).
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e Pour tout z € F non nul :

% = H2 Z T, ei>ei,u(z<ﬂ31 ej>ej)>
j=1

= ZZ (z,e5)(x, e5)(ei, ule;))

IIxH

par linéarité de u

et bilinéarité du p.s.

= ||xH2 ZZ x,e5)(x, e5)(ei, Aje;)

1=1j5=1

1 n
= W Z(:p,ei>2)\¢ car (e;,e;) = 05
i=1

1 n
W)\n Z(xv €i>2
z i=1

= \p, indépendant de =

N

donc Sup M

5= < An = Max Sp(u).
e0p  |lzll

e Pour z =e,,o0n a:

(z,u(z)) _ (en,ulen))
ll=l12 llenl?
_ (en, Anen)
llen|l?
= An

= Max Sp(u)

Ce qui montre que le Sup étudié est un max, et
qu’il vaut Max Sp(u).

2. On suppose maintenant u autoadjoint positif. Par ca-
ractérisation spectrale, on a Sp(u) C Ry et donc
Max Sp(u) = p(u).

e Pour tout z € F non nul :

< DU Lol u(a) | Canchy-Schwars
el < T
1
=l ]
e

par déf. de norme d’opérateur

= ||u]| indépendant de x

donc Sup M
e0g ]

< lull, c’est-a-dire :
Max Sp(u) < [[lul|

par le point précédent.

e Pour tout z € F non nul, comme (e1,...,en) est

12/17 http://mpi.lamartin.fr

orthonormée :

lu(@)I? = (3" (u(@), ei)es, Z: u(@), e;)e;)

=1

n
:(Zmu(el)el que]
i=1 j=1
car u autoadjoint
n n
= Nl ee, Aj(w,ej)e;)
i=1 =1
car u(e;) = \je;

ZZ (x,eq)(w, ej) (e, e;)

par bilinéarité

n

= (3" Aee)?

i=1
car B orthonormée

n

< )‘i Z<x7 ei>2

i=1
= A7 lll?

Ainsi, par positivité de An, [|Ju(z)]| < An||lz||, ce qui
signifie, par définition de la norme d’opérateur :

llull < An
c’est-a-dire :
llull < Max Sp(u)
On a montré que :
Max (Sp(w)) = p(u) = |ul|
3. Cette fois-ci, ’endomorphisme u est quelconque.
¢ Remarquons tout d’abord que u* o u est autoad-
joint positif :
(u* O/u/)* — u* O/u/**
=u*ou
et, pour tout x € F :
(u* o u(@), z) = (u(x), u(x))
= [lu(x)|?
>0
o Par les deux points précédents, on a donc :
[lw* o ul| = p(u* ou) par le point 2
= Max Sp(u* o u) par le point 2

(z,u* o u(z)

= S:%) BE par le point 1
x
g (10). u(2)
ez0 ||z
[[u()|?
= Sup ——F—
ez0 |22
= [ull?

par déf. de norme d’opérateur

O
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Exercices et résultats classiques a connaitre

Caractérisation des symétries orthogonales, des projecteurs orthogonaux

Soit E espace euclidien.

Montrer que les projections orthogonales de E sont les projections qui sont des endomorphismes autoadjoints.

Soit E espace euclidien.

Montrer que les symétries orthogonales de F sont les isométries vectorielles qui sont des endomorphismes

autoadjoints.

Racine carrée d’une matrice symétrique positive

(a) Montrer que, pour toute matrice S € S;F(R), il existe R € S,/ (R) telle que : S = R?

(b) Montrer l'unicité de cette matrice R.

Décomposition polaire d’'une matrice inversible

Montrer que toute matrice A € GL, (R) admet une décomposition polaire :
A=QSou Qe 0,(R)et SeSH(R).

Matrice de Householder

2
Si Ve M, 1(R) \ {0}, on appelle matrice de Householder de V' la matrice : Hy = I,

4R
Montrer que Hy est symétrique et orthogonale, et reconnaitre ’endomorphisme qu’elle représente.

vvT

Matrice de Hilbert

1
On s’intéresse a la matrice de Hilbert H = (> .
i+ =1/ 1cij<n

a) Pour X = (;)1<i<n € Myu1(R), exprimer X " HX.
( ) It ’ p

(b) Montrer que H est une matrice symétrique, définie positive.
On écrira zﬂ%l comme lintégrale sur [0,1] d’un polynéme simple.

Une formule variationnelle

Soit u un endomorphisme autoadjoint d’un espace euclidien. Montrer que :

G (@)

Smp e = MexSp(w)

2025-2026 http://mpi.lamartin.fr
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'Exercices du CCINP

Soit E un espace euclidien muni d’un produit scalaire noté (| ).

On pose Vz € E, ||z]| = v/(z|x).

Pour tout endomorphisme u de E, on note u* ’adjoint de u.

GNp 63

1. Un endomorphisme u de E vérifiant Vo € E, (u(x)|z) = 0 est-il néces-
sairement I’endomorphisme nul 7

2. Soit u € L(E).
Prouver que les trois assertions suivantes sont équivalentes :

i V(z,y) € B2, (u(@)u®)) = (o @)l 1)).
i, Vo € B, [Ju(z)]] = ||u*(z)]|

1. Soit A € S,, (R).
Prouver que A € S (R) <= sp(4) C [0, +o0].

Grp 66

2. Prouver que V A € S, (R), A% € S} (R).
3. Prouver que VA € S, (R),VB € S} (R), AB= BA = A’B € S;' (R).

4. Soit A € SF (R).
Prouver qu’il existe B € S; (R) telle que A = B2.

320.10 Gib 68.2
1 -1 1

Soit la matrice A= -1 1 -1
1 -1 1

1. Démontrer que A est diagonalisable de-guatre-meanieres :

(a) sans calcul,

2. On note f 'endomorphisme de R dont la matrice dans la base cano-
nique de R? est A.

Trouver une base orthonormée dans laquelle la matrice de u est diago-
nale.

Soit E un espace euclidien de dimension n et 4 un endomorphisme de E.

Grp 78

On note (z|y) le produit scalaire de x et de y et ||.|| la norme euclidienne
associée.
1. Soit u un endomorphisme de E, tel que : Vo € E,||u(x)|| = ||z]|.

(a) Démontrer que : V(z,y) € E? (u(z)u(y)) = (z|y).

(b) Démontrer que u est bijectif.

2. On note O(FE) I'ensemble des isométries vectorielles de E,
c'est-a-dire O(F) = {u € L(E), Vz € E, |Ju(x)|| = ||z| }
Démontrer que O(F), muni de la loi o, est un groupe.

3. Soit u € L(E). Soit e = (ey, e, ..., €,) une base orthonormée de E.
Prouver que : u € O(E) <= (u(e1),u(ez), ..., u(e,)) est une base ortho-
normée de E.

GNP 101.22

2. On considére la matrice A =

N = O
Nl O N
(el NI NI

(a) Justifier, sans calcul, que la matrice A est diagonalisable.

1
(b) Prouver que ~3 est valeur propre de A et déterminer le sous-espace
propre associé.

(c) Déterminer une matrice P imversible orthogonale et une matrice D
diagonale de M3(R) telles que D=P=1AP A = PDPT.

n
(=
N
(-]
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Soit E un espace euclidien et u € L(E). Montrer que :

(a) Ker(u*) = (Imu)*

(b) Im(u*) = (Keru)~*

Dans E espace euclidien non nul et u € S(F). Montrer que :

Sup [|[u(z)|| = Max |A
Sup Ju(@)] = Mas A

Soit E espace euclidien de dimension n > 2, a un vecteur unitaire et A € R.
Pour z € E, on pose :
f(x) =24+ Mx,a)a

(a) Montrer que f est autoadjoint.

(b) Déterminer les éléments propres de f.

Montrer que O, (R) est compact.

Soit E un espace euclidien et u € £L(E). Montrer que :
(a) Ker(u*) = (Imu)*

(b) Im(u*) = (Keru)=*

On travaille dans un espace euclidien de dimension 3 muni d’une base ortho-
normée directe. Décrire les endomorphismes représentés par les matrices :

1 1 2 2
(a) A= 3 2 1 =2
2 =2 1
(L V2o
(b) B= B} V2 0 V2
1 V2 1
0 01
(cC=1|1 00
010
1 -8 4 1
(d) D= g 4 7 4
1 4 -8
320.19
Orthodiagonaliser :
2 -1 2
A=[-1 2 2
2 2 -1

Etudier la transformation géométrique associée & :

L[8 1
M=g (-4 4 -7
1 8 4

Soit u € L(R?) dont la matrice relativement & la base canonique est A =

1 -2 -2 -1
—3 2 —1 —2]. Reconnaitre u.
-1 2 =2

On considére E = M,,(R) muni de son produit scalaire canonique. Soit A, B
deux matrices orthgonales. Montrer que les applications :

M AM, M+ MB, M~ AMB

n
(=
N
(-]
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sont des isométries vectoerielles de E.

Petits problemes d’entrainement

520.23] 4

Soit f une isométrie d’'un espace euclidien £. On note Id l'application iden-
tique de E, F = Ker(f — Id) et G le sous-espace supplémentaire orthogonal
de F'.

(a) Montrer que, pour tout =,y € E, (f(z), f(y)) = (z,y).

(b) Montrer que G est stable par f, et que la restriction de Id— f & G, notée
g, est un automorphisme de G.

1
(c) On note g, = — (Id+ f+ f2+---+ f*~'). Exprimer l'application
n

gn © (Id — f) en fonction de Id, f™ et n. En déduire que, pour tout
z € G, gn(x) ‘—Jr__) Op.
n—-+oo

(d) Soit © € E. Montrer que g, (z) P p(x), ot p est la projection
n—-+0oo

orthogonale sur F.

cosf —sinf 0
(e) On pose A = | sin@ cosf 0 ]. Calculer la limite, pour n — +o0,
0 0 1
de : .
5(Ig,J~4+~-+A”*1)

[52021] #

Soit n > 3, E = M,1(R), A et B deux colonnes non colinéaires dans E et :
M =AB" + BAT
(a) Justifier que M est diagonalisable.
(b) Déterminer rg(M) en fonction de A et B.

(c) Déterminer le spectre de M et décrire les sous-espaces propres associés.
On pourra commencer par le cas ot (A, B) est une famille orthonormée.

Soit E un espace euclidien de dimension n > 3, a,b deux vecteurs unitaires
de F/, non colinéaires. Pour x € E, on pose :

f(@) = {(a,x)a + (b, z)b
(a) Montrer que f est un endomorphisme autoadjoint de E.
(b) Déterminer noyau et image de f.

(¢) Déterminer les éléments propres de f.

Soit E = R, [X] muni du produit scalaire défini par :

—+oo

(P,Q) = P)Q(t)e™" dt

—00
(a) Montrer qu’il s’agit bien d’un produit scalaire.

(b) Montrer que f : P+ 2X P’ — P” est un endomorphisme autoadjoint
de E.

(¢) Montrer que les valeurs propres de f sont positives, et les déterminer.

Soit A, B € M,,(R). On note a (resp. 3) la plus grande valeur propre de AT A
(resp. BT B). Montrer que :

VA € Sp(AB), A2 < af

Soit n un entier > 2 et M € M, (R) définie par :

0 ... 01
M=|: Do
0 ... 01
1 11

(a) Justifier que M est diagonalisable et donner dim Ker M.

n
(=
N
(-]
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(b) Donner une base de Ker(M )=, et préciser la matrice de ’'endomorphisme
induit par M sur Ker(M)* dans cette base.

(c¢) En déduire le spectre de M.

Soit A = (ai;)ij € Sp(R) une matrice symétrique satisfaisant :

ALT — 719
Montrer que :
Z a?j =rg(A)
1<6,5<n
320.30
n—1 -1 --- -1
. —1
Soit A = € M,(R).
: . . -1
-1 - =1 n-1

Montrer que A € S,(R), Sp(A4) C Ry et calculer rg(A).

1
Soit E = R, [X] muni du produit scalaire (P, Q) = / P(t)Q(t)dt.
0

1

(a) Soitwu : P [ (X+t)"P(t)dt: montrer que u est un endomorphisme

0
autoadjoint de F.

(b) En déduire qu’il existe une base orthonormée (P, ..., P,) de E formée
de vecteurs propres de u. On note Ay, ..., A, les vp associées.

(¢) Montrer que :
V(w,y) €R®, (x+y)" =D MPr(z)Pe(y)
k=0

En déduire tr(u).

n
(=
N
(-]
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