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Dans tout le chapitre, sauf mention contraire, E est un espace euclidien et 〈·, ·〉 est son produit scalaire.

1 Adjoint d’un endomorphisme d’un espace euclidien

1.1 Définition, matrice de l’adjoint en base orthonormée
Définition. Soit u ∈ L(E). Il existe un unique endomorphisme u∗ ∈ L(E) tel que :

∀x, y ∈ E, 〈u(x), y〉 = 〈x, u∗(y)〉

L’endomorphisme u∗ s’appelle l’adjoint de u.
Proposition. Soit B une base orthonormée de E, et u ∈ L(E). Alors :

Mat(u∗,B) = Mat(u,B)>

Remarque. L’hypothèse base orthonormée est essentielle ici.

Corollaire. u et u∗ ont même trace, même déterminant, même polynôme caractéristique, même spectre.
Remarque. En revanche, ils n’ont pas pas les mêmes vecteurs propres.

1.2 Propriétés
Proposition. Pour u, v ∈ L(E), λ, µ ∈ R :

• (λu+ µv)∗ = λu∗ + µv∗

• (u∗)∗ = u

• (u ◦ v)∗ = v∗ ◦ u∗

• Si u est bijectif, u∗ aussi et (u∗)−1 = (u−1)∗

Proposition. Soit u ∈ L(E) et F un sous-espace de E. Si F est stable par u, alors F⊥ est stable par u∗.

2 Endomorphismes autoadjoints d’un espace euclidien

2.1 Définition, matrice en base orthonormée
Définition. Soit E un espace euclidien et u ∈ L(E). On dit que u est autoadjoint lorsque u∗ = u, i.e. :

∀x, y ∈ E, 〈u(x), y〉 = 〈x, u(y)〉

On note S(E) l’ensemble des endomorphismes autoadjoints de E.
Remarque. On qualifie parfois les endomorphismes autoadjoints (i.e. u∗ = u) de symétriques, mais on évitera cette

terminologie, car il n’y a aucune raison que ça soit une symétrie (i.e. u ◦ u = IdE).

Proposition. Soit u endomorphisme autoadjoint de E et F un sous-espace vectoriel de E. Si F est stable par u,
alors F⊥ est aussi stable par u.

Proposition. Soit E espace euclidien de dimension n, et u ∈ L(E). Fixons B une base orthonormée de E.
Alors :

u ∈ S(E) ⇐⇒ Mat(u,B) ∈ Sn(R)

c’est-à-dire que u est autoadjoint si et seulement si sa matrice en base orthonormée est symétrique.
Remarque. L’hypothèse base orthonormée est essentielle ici.

Corollaire. La dimension de S(E) est n(n+ 1)

2
.
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2.2 Porjecteurs orthogonaux
Proposition. Soit p un projecteur (i.e. p ◦ p = p). Alors p est un projecteur orthogonal (i.e. Ker p ⊥ Im p) si et

seulement si p est autoadjoint.

2.3 Le théorème spectral
Théorème spectral - version endomorphisme.

Soit E espace euclidien et u ∈ L(E). Alors :

u ∈ S(E) ⇐⇒ E = ©⊥
λ∈Sp(u)

Eλ(u)

⇐⇒ ∃B base orthonormée t.q. Mat(u,B) diagonale

Remarque.
• On dit parfois que tout endomorphisme autoadjoint d’une espace euclidien est orthodiagonalisable.

• On note bien que les espaces propres des endomorphismes autoadjoints sont orthogonaux.

Théorème spectral matriciel.

Soit A ∈ Mn(R). Alors :

A ∈ Sn(R) ⇐⇒ A est orthogonalement diagonalisable

c’est-à-dire que l’on peut écrire :
A = PDP>

où D est une matrice diagonale et P une matrice orthogonale, c’est-à-dire une matrice dont les colonnes
forment une base orthonormée de Mn1(R).

Remarque. L’étude des matrices orthogonale est menée au § 4. On y montre que les matrices orthgonales sont les
matrices de passage entre bases orthonormées, et qu’on les inverse en transposant.

2.4 Endomorphismes autoadjoints positifs, définis positifs
Définition. Soit u ∈ S(E) un endomorphisme autoadjoint. On dit qu’il est positif lorsque :

∀x ∈ E, 〈x, u(x)〉 > 0

On dit qu’il est défini positif lorsque :

∀x ∈ E r {0E}, 〈x, u(x)〉 > 0

On note S+(E) (resp. S++(E)) l’ensemble des endomorphismes autoadjoints positifs (resp. définis positifs).

Remarque.
• Pour montrer que u est défini positif, on peut aussi montrer :

∀x ∈ E,

®
〈x, u(x)〉 > 0

〈x, u(x)〉 = 0 =⇒ x = 0

• On ne qualifie un endomorphisme de positif que s’il est déjà autoadjoint.

• S+(E) et S++(E) sont stables par l’addition (mais ce ne sont pas des espaces vectoriels).

2025-2026 http://mpi.lamartin.fr 3/17

http://mpi.lamartin.fr


2
0
2
6

MPI 320. Endomorphismes remarquables des espaces euclidiens

Définition. Soit A ∈ Sn(R) une matrice symétrique. On dit qu’elle est positive lorsque :

∀X ∈ Mn1(R), X
>AX > 0

On dit qu’elle est définie positive lorsque :

∀X ∈ Mn1(R)r {0}, X>AX > 0

On note S+
n (R) (resp. S++

n (R)) l’ensemble des matrices symétriques positives (resp. définies positives).
Remarque.

• Pour montrer que A est définie positive, on peut aussi montrer :

∀X ∈ Mn1(R),

®
X>AX > 0

X>AX = 0 =⇒ X = 0

• On ne qualifie une matrice de positive que si elle est déjà symétrique.
• S+

n (R) et S++
n (R) sont stables par l’addition (mais ce ne sont pas des espaces vectoriels).

Caractérisation spectrale - version endomorphisme.

Soit u ∈ S(E) un endomorphisme autoadjoint. Alors :

u ∈ S+(E) ⇐⇒ Sp(u) ⊂ R+ et u ∈ S++(E) ⇐⇒ Sp(u) ⊂ R∗
+

Caractérisation spectrale - version matricielle.

Soit A ∈ Sn(R) une matrice symétrique. Alors :

A ∈ S+
n (R) ⇐⇒ Sp(A) ⊂ R+ et A ∈ S++

n (R) ⇐⇒ Sp(A) ⊂ R∗
+

3 Isométries d’un espace euclidien

3.1 Définition
Définition. Soit u un endomorphisme de E. On l’appelle isométrie vectorielle lorsqu’elle conserve les normes :

∀x ∈ E, ‖u(x)‖ = ‖x‖

On note O(E) l’ensemble des isométries vectorielles.
Remarque. On trouve aussi, dans la littérature, la terminologie automorphisme orthogonal.

Exemple. Les symétries orthogonales sont des isométries vectorielles.
Les projecteurs orthogonaux ne sont pas, en général, des isométries vectorielles.

3.2 Caractérisations
Proposition. l’endomorphisme u est une isométrie vectorielle si et seulement s’il conserve le produit scalaire,

c’est-à-dire :
∀x, y ∈ E, 〈u(x), u(y)〉 = 〈x, y〉

Proposition. L’endomorphisme u est une isométrie vectorielle si et seulement si l’image d’une base orthonormée
de E par u est une base orthonormée de E.

Proposition. L’endomorphisme u est une isométrie vectorielle si et seulement si :

u ◦ u∗ = IdE

ou encore, c’est équivalent, u∗ ◦ u = IdE . Ainsi, les éléments de O(E) sont les automorphismes de E dont
l’inverse est l’adjoint.
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3.3 Propriétés
Proposition. Toute isométrie vectorielle est bijective : c’est un automorphisme de E.
Proposition. Soit u ∈ O(E). Alors det(u) = ±1

Remarque. Attention ! la réciproque est bien-sûr fausse.

3.4 Le groupe O(E)

Proposition. O(E) est un sous-groupe de (GL(E), ◦). On appelle O(E) le groupe orthogonal de E.
Définition. On note SO(E) = {u ∈ O(E), det(u) = 1}. C’est un sous-groupe de O(E), appelé le groupe

spécial orthogonal.
Ses éléments sont les isométries vectorielles directes.
Les éléments de O(E)r SO(E) sont les isométries vectorielles indirectes.

4 Matrices orthogonales

4.1 Définition
Définition. On dit que A ∈ Mn(R) est une matrice orthogonale si et seulement si :

AA> = In

On note On(R) (ou parfois O(n)) l’ensemble des matrices orthogonales de Mn(R).

4.2 Caractérisations
Proposition. Soit A ∈ Mn(R). Sont équivalentes :

(i) A est une matrice orthogonale ;

(ii) A>A = In, i.e. les colonnes de A forment une base orthonormée de Mn1(R) ;

(iii) A est inversible et A−1 = M> ;

(iv) AA> = In, i.e. les lignes de A forment une base orthonormée de M1n(R) ;

Proposition. Soit u ∈ L(E) et B une base orthonormée de E. Alors :

u ∈ O(E) ⇐⇒ Mat(u,B) ∈ On(R)

Remarque. L’hypothèse base orthonormée est essentielle ici.

Proposition. Soit B une base orthonormée de E, et B′ une famille de n vecteurs de E. Alors :

B′ est une base orthonormée ⇐⇒ MatB(B′) ∈ On(R)

et MatB(B′) est la matrice de passage de B à B′.

4.3 Propriétés
Proposition. Soit A ∈ On(R). Alors :

• A est inversible, et A−1 = A>

• detA = ±1
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4.4 Le groupe On(R)

Proposition. On(R) est un sous-groupe de (GLn(R),×). On appelle On(R) le groupe orthogonal d’ordre n.

Définition. On note SOn(R) = {A ∈ On(R), det(A) = 1} (parfois aussi noté O+
n (R)). C’est un sous-groupe de

On(R), appelé le groupe spécial orthogonal d’ordre n.
Ses éléments sont les matrices orthogonales directes (ou positives).
Les éléments de On(R)r SOn(R) sont les matrices orthogonales indirectes (ou négatives).

5 Orientation

5.1 Orientation d’un espace vectoriel réel

Fixons E un espace vectoriel réel de dimension finie.
Remarque. Si B et B′ sont deux bases de E, on sait que detB(B′) est un réel non nul.

detB(B′) désigne le déterminant de la famille des vecteurs de B′, exprimés en coordonnées dans la base B, c’est-à-dire
le déterminant de la matrice de passage de B vers B′.

Définition. On dit que B a la même orientation que B′ lorsque detB(B′) > 0.

Proposition. « a la même orientation » est une relation d’équivalence sur l’ensemble des bases de E. Il y a
exactement deux classes d’équivalences.

Définition. Orienter E, c’est faire le choix de l’une des deux classes d’équivalence pour la relation « a la même
orientation ». On fait en général ce choix à travers le choix d’une base particulière, un représentant de la
classe choisie. Les bases de cette classe sont dites directes, les autres indirectes.

Exemple. En général, on oriente Rn en choisissant la base canonique directe.

5.2 Orientation d’un hyperplan

Définition. Soit E un espace euclidien orienté, et H un hyperplan de E. On oriente H par le choix d’un vecteur
normal a : une base orthonormale (e1, . . . , en−1) de H est directe lorsque

(
e1, . . . , en−1,

a

‖a‖
)

est une base

directe de E.

5.3 Espace euclidien orienté, produit mixte

Proposition. Soit E un espace euclidien orienté et x1, . . . , xn ∈ E.
Le déterminant de la famille (x1, . . . , xn) est le même dans toutes les bases orthonormales directes de E.
On peut donc noter :

det(x1, . . . , xn)

pour désigner detB(x1, . . . , xn), où B est une base orthonormée quelconque de E.

Remarque. On trouve aussi la notation [x1, . . . , xn], et l’appelation produit mixte.

Remarque. On peut reformuler le résultat précédent en disant que, pour B et B′ deux bases orthonormées directes
de E :

detB = detB′

Proposition. Dans le même contexte, si u ∈ L(E) et x1, x2, . . . , xn ∈ E :

[u(x1), u(x2), . . . , u(xn)] = det(u)× [x1, x2, . . . , xn]
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6 Étude des isométries vectorielles
6.1 Isométries vectorielles en dimension 2

6.1.1 Étude des isométries vectorielles directes

Théorème.

Soit M ∈ SO2(R). Il existe θ ∈ R tel que M =

(
cos θ − sin θ
sin θ cos θ

)
.

Corollaire.

• L’application : R : R → SO2(R)

θ 7→ R(θ) =

(
cos θ − sin θ
sin θ cos θ

) est un morphisme surjectif de groupes de (R,+)

dans (SO2(R),×). Son noyau est 2πZ.

• L’application : U → SO2(R)

eiθ 7→
(

cos θ − sin θ
sin θ cos θ

) est correctement définie, et est un isomorphisme de groupes

de (U,×) dans (SO2(R),×).

Corollaire. (SO2(R),+) est un groupe commutatif.
Remarque. C’est une propriété tout à fait spécifique à la dimension 2.

Proposition. Soit E un espace euclidien orienté de dimension 2. Si u ∈ SO(E), il existe θ ∈ R, unique modulo
2π, tel que la matrice de u soit, dans n’importe quelle base orthonormée directe de E :(

cos θ − sin θ
sin θ cos θ

)

Définition. On dit que u est la rotation vectorielle d’angle orienté θ.

6.1.2 Mesure d’un angle orienté entre deux vecteurs non nuls

Définition. Si x, y sont deux vecteurs unitaires de E un espace euclidien orienté de dimension 2, alors il existe
une unique rotation u ∈ SO(E) telle que y = u(x).
Si x, y deux vecteurs non nuls, on peut alors appeler mesure de l’angle orienté (x, y) tout réel θ tel que
la rotation d’angle θ envoie x

‖x‖ sur y
‖y‖ .

On a les relations :
〈x, y〉 = ‖x‖ ‖y‖ cos θ et [x, y] = ‖x‖ ‖y‖ sin θ

6.1.3 Étude des isométries vectorielles indirectes

Proposition. Soit E un espace euclidien orienté de dimension 2. Soit u ∈ O(E) r SO(E) et B une base
orthonormée directe de E.

• u est une réflexion, c’est-à-dire une symétrie orthogonale par rapport à une droite.

• il existe θ ∈ R tel que :

Mat(u,B)) =
(

cos θ sin θ
− sin θ cos θ

)
et u est la réflexion par rapport à la droite dirigée par

(
cos θ

2

sin θ
2

)
.
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6.2 Réduction des isométries en dimension n

Lemme. Soit u ∈ O(E)

• Si F un sous-espace stable par u, alors F⊥ est stable par u.

• Il y a au moins un plan ou une droite stable par u.

• Les seules valeurs propres (réelles) possibles pour u sont 1 et −1.

Théorème.

Soit E un espace euclidien, u ∈ O(E). Il existe une base orthonormée B de E, des entiers m, p, q et des
réels θ1, . . . , θm tels que, par blocs :

Mat(u,B) =


Rθ1

. . .
Rθm

−Ip
Iq



Remarque. Si u ∈ SO(E), alors l’entier p est pair.

Version matricielle. Soit M ∈ On(R). Alors il existe P ∈ On(R) et Q de la forme ci-dessus telles que :

M = PQP−1 = PQP>

6.3 Cas particulier de la dimension 3

Proposition. Soit E un espace euclidien de dimension 3, u ∈ SO(E). Il existe une base orthonormée B de E et
θ ∈ R tels que :

Mat(u,B) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


Remarque.

• Contrairement au cas de la dimension 2, la forme de la matrice de u dépend fortement de la base choisie.
• Si l’on écarte le cas où u = IdE , on constate que Vect(e3) est la droite des vecteurs invariants par u. F = Vect(e3)⊥,

orienté par e3, est stable par u, et l’endomorphisme induit uF est une rotation vectorielle d’angle θ.
On dit que u est la rotation d’axe dirigé et orienté par e3 et d’angle θ.

• Le programme officiel indique que « la pratique du calcul des éléments géométriques d’un élément de SO3(R) n’est
pas un attendu du programme ».

• On doit néanmoins savoir trouver l’axe d’une rotation (c’est E1(u) = Ker(u − IdE)), et dire que l’angle vérifie
2 cos θ + 1 = tr(u), ce qui donne l’angle au signe près.

7 Annexes
7.1 Annexe : l’adjoint est un endomorphisme

Définition. Soit u ∈ L(E). Il existe un unique endo-
morphisme u∗ ∈ L(E) tel que :

∀x, y ∈ E, 〈u(x), y〉 = 〈x, u∗(y)〉

L’endomorphisme u∗ s’appelle l’adjoint de u.

Preuve.
• Tout d’abord, pour tout y ∈ E fixé, par bilinéarité du

produit scalaire et linéarité de u, x 7→ 〈u(x), y〉 est une
forme linéaire. Alors, par le théorème de représentation
des formes linéaires, il existe un unique vecteur a tel que :

∀x ∈ E, 〈u(x), y〉 = 〈x, a〉
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et on peut noter u∗(y) ce vecteur a.
On a montré que u∗ est bien défini, et à valeurs dans E.

• Montrons maintenant la linéarité de u∗.
Soit y1, y2 ∈ E, α1, α2 ∈ R. Pour tout x ∈ E, on a :

〈x, u∗(α1y1 + α2y2)− α1u
∗(y1)− α2u

∗(y2)〉
= 〈x, u∗(α1y1 + α2y2)〉 − α1〈x, u∗(y1)〉 − α2〈x, u∗(y2)〉

par bilinéarité
= 〈u(x), α1y1 + α2y2〉 − α1〈u(x), y1〉 − α2〈u(x), y2〉

par définition de u∗

= 〈u(x), α1y1 + α2y2 − α1y1 − α2y2〉
par bilinéarité

= 〈u(x), 0〉
= 0

Donc u∗(α1y1 +α2y2)−α1u∗(y1)−α2u∗(y2) est ortho-
gonal à tout vecteur de E, c’est donc le vecteur nul :

u∗(α1y1 + α2y2) = α1u
∗(y1) + α2u

∗(y2)

7.2 Annexe : démonstration du théorème spectral

Lemme 1. Soit E espace euclidien de dimension > 1,
et u ∈ S(E) un endomorphisme autoadjoint de E.
Alors Sp(u) 6= ∅.

Remarque. Il s’agit bien du spectre de u en tant qu’en-
domorphisme de E, donc des valeurs propres réelles
de u.

Preuve.
• Notons B une base orthonormée de E et S = Mat(u,B)

la matrice (symétrique réelle) de u dans B. Le polynôme
caractéristique χS est scindé dans C. Il existe donc λ ∈ C
valeur propre de S vue comme matrice dans Mn(C),

donc il existe Z =

z1...
zn

 ∈ Mn1(C) non nulle telle que :

SZ = λZ

On a alors, d’une part :

Z
>
SZ = Z

>
λZ

= λZ
>
Z

= λ(z1z1 + · · ·+ znzn)

= λ(|z1|2 + · · ·+ |zn|2)

et d’autre part :

Z
>
SZ = Z

>
SZ car S est réelle

= SZ
>
Z

= λZ
>
Z

= λ(|z1|2 + · · ·+ |zn|2)

Comme Z 6= 0, on a |z1|2+· · ·+|zn|2 6= 0 et donc λ = λ :
λ ∈ R.

Remarque. On a même montré que toutes les valeurs
propres de S sont réelles.

Lemme 2. Soit E espace euclidien de dimension > 1,
et u ∈ S(E) un endomorphisme autoadjoint de E.
Alors u est diagonalisable.

Preuve. On raisonne par récurrence forte sur la dimension
de E.

• Si E est de dimension 1, u est bien-sûr diagonalisable.
• Soit n > 2, on suppose que le résultat est vrai dans tout

espace euclidien de dimension 6 n− 1. Soit E un espace
euclidien de dimension n et u ∈ S(E).
D’après le lemme 1, il existe λ ∈ R valeur propre de u.
L’espace propre Eλ(u) est stable par u et u est autoad-
joint, donc l’orthogonal F = Eλ(u)

⊥ est aussi stable par
u.
E étant de dimension finie, dim(F ) = n− dim(Eλ(u)) 6
n − 1. On applique l’hypothèse de récurrence à l’endo-
morphisme induit uF , qui est bien autoadjoint puisque
u l’est. Ainsi uF est diagonalisable.
Mais uEλ(u) = λIdEλ(u) est aussi diagonalisable et
E = F ⊕ Eλ(u) donc u est diagonalisable.

• On a montré le résultat, par récurrence.

Lemme 3. Soit E espace euclidien, et u ∈ S(E) un
endomorphisme autoadjoint de E. Soit λ, µ deux
valeurs propres (réelles) distinctes de u. Alors
Eλ(u) ⊥ Eµ(u).

Preuve. Soit x ∈ Eλ(u) et y ∈ Eµ(u).
On calcule d’une part :

〈u(x), y〉 = 〈λx, y〉
= λ〈x, y〉

et d’autre part :

〈u(x), y〉 = 〈x, u(y)〉 car u autoadjoint
= 〈x, µy〉
= µ〈x, y〉

Comme λ 6= µ, c’est que 〈x, y〉 = 0.

Théorème.

Soit E espace euclidien et u ∈ L(E). Alors :

u ∈ S(E) ⇐⇒ E = ©⊥
λ∈Sp(u)

Eλ(u)

⇐⇒ ∃B base orthonormée

t.q. Mat(u,B) diagonale

Preuve. Notons (i), (ii) et (iii) ces trois propriétés.
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(i) =⇒ (ii)

Par le lemme 2, on a déjà E =
⊕

λ∈Sp(u)
Eλ(u).

Par le lemme 3, les espaces propres sont deux à deux
orthogonaux. Le résultat est donc acquis.

(ii) =⇒ (iii)

Notons λ1, . . . , λp les valeurs propres deux à deux dis-
tinctes de u. On considère, pour tout i ∈ {1, . . . , p},
Bi une base orthonormée de Eλi

(u). Notons alors B la
concaténation (B1, . . . ,Bp). Comme E = ©⊥

λ∈Sp(u)
Eλ(u),

B est une base orthonormée de E et on a, par blocs :

Mat(u,B) =

λ1In1 0

. . .
0 λpInp


qui est bien diagonale.

(iii) =⇒ (i)

Notant S = Mat(u,B), on a S> = S car S est diagonale,
et donc u∗ = u car B est orthonormée.

7.3 Annexe : une autre démonstration du théorème spectral

Lemme 1. Soit E espace euclidien de dimension > 1,
et u ∈ S(E) un endomorphisme autoadjoint de E.
Alors Sp(u) 6= ∅.

Preuve. On note φ : x 7→ 〈u(x), x〉.

• Comme u est linéaire en dimension finie, elle est conti-
nue. Le produit scalaire étant continu, φ est continue.
Sur la sphère unité S = S(0, 1), fermée bornée en dimen-
sion finie, donc compacte, φ admet donc un maximum
atteint en x0 :

∃x0 ∈ S, ∀x ∈ S, φ(x) 6 φ(x0)

Notons H = Vect(x0)⊥, et fixons y ∈ H.

• Pour t ∈ R, on note :

ψ(t) = φ
(
(cos t)x0 + (sin t)y

)
Pour tout t ∈ R :

ψ(t) = φ
(
(cos t)x0 + (sin t)y

)
6 φ(x0) par définition du max
= ψ(0)

donc la fonction réelle de variable réelle ψ admet un
maximum en 0.

• On calcule :

ψ(t) = 〈u
(
(cos t)x0 + (sin t)y

)
, (cos t)x0 + (sin t)y〉

= (cos2 t)φ(x0) + (sin t)2φ(y) + (cos t sin t)〈u(x0), y〉
+ (cos t sin t)〈u(y), x0〉

par linéarité de u et bilinéarité du p.s.

= (cos2 t)φ(x0) + (sin t)2φ(y) + (sin 2t)〈u(x0), y〉
car u autoadjoint

puis :

ψ′(t) = (−2 sin t cos t)φ(x0) + (2 cos t sin t)φ(y)
+ (2 cos 2t)〈u(x0), y〉

Comme ψ admet un maximum en t = 0, c’est que :

〈u(x0), y〉 = 0

• On a montré que, pour tout y ∈ H, 〈u(x0), y〉 = 0. Ainsi
u(x0) ∈ H⊥. Mais H = Vect(x0), donc :

u(x0) ∈ Vect(x0)

Ainsi, il existe λ ∈ R tel que u(x0) = λx0. On a montré
que x0 est vecteur propre de u, et trouvé λ une valeur
propre de u.

7.4 Complément : une autre démonstration du théorème spectral

Lemme 0. Soit F un espace euclidien, v ∈ S(F ) un
endomorphisme autoadjoint de F . Soit

Q = (X − α)2 + β ∈ R[X]

où β > 0, un polynôme irréductible, écrit sous sa
forme canonique.
Alors Q(v) est autoadjoint, défini-positif.

Preuve.
• Le polynôme d’endomorphisme est :

Q(v) = (v − αIdF )2 + βIdF

donc (
Q(v)

)∗
=

(
(v − αIdF )2 + βIdF

)∗
= (v∗ − αId∗

F )2 + βId∗
F

= (v − αIdF )2 + βIdF

car v et IdF autoadjoints
= Q(v)

Ainsi Q(v) est autoadjoint.
• Pour x ∈ E, on calcule :

〈Q(v)(x), x〉

= 〈
(
(v − αIdF )2 + βIdF

)
(x), x〉

= 〈
(
(v − αIdF ) ◦ (v − αIdF )

)
(x), x〉+ β〈x, x〉

= 〈(v − αIdF )(x), (v − αIdF )(x)〉+ β〈x, x〉
car v − αIdF autoadjoint

= ‖(v − αIdF )(x)‖2 + β‖x‖2

> 0

Ainsi Q(v) est autoadjoint positif.
• Soit x ∈ E tel que 〈Q(v)(x), x〉 = 0. C’est donc que

‖(v − αIdF )(x)‖2 + β‖x‖2 = 0 par le calcul précé-
dent. Il s’agit d’une somme nulle de termes positifs, donc
β‖x‖2 = 0 et donc ‖x‖ = 0 car β > 0. Ainsi x = 0.
Finalement, on a montré que Q(v) est autoadjoint défini
positif.
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Lemme 1. Soit E espace euclidien de dimension > 1,
et u ∈ S(E) un endomorphisme autoadjoint de E.
Alors Sp(u) 6= ∅.

Preuve. Intéressons-nous à la décomposition en produit de po-
lynômes irréductibles du polynôme minimal πu de u. Supposons
que cette décomposition comprenne un termes irréductibles de
degré 2, c’est-à-dire qu’il existe Q et P tels que :

πu = QP

où Q = (X − α)2 + β avec β > 0. On a donc :

0L(E) = πu(u)

= Q(u) ◦ P (u)

Notons F = Im(P (u)). Comme u et P (u) commutent, F est
stable par u. On note v = uF l’endomorphisme induit par u
sur F . L’égalité précédente s’écrit :

∀x ∈ E, Q(u)(P (u)(x)) = 0

et donc, comme chaque y ∈ F s’écrit P (u)(x) ,

∀y ∈ F, Q(v)(y) = 0

Mais le lemme 0 indique que Q(v) est autoadjoint défini po-
sitif, donc pour tout y ∈ F , si y 6= 0, alors 〈Q(v)(y)︸ ︷︷ ︸

=0

, y〉 > 0.

C’est donc que tout y ∈ F = Im(P (u)) est nul, et donc que
P (u) = 0L(E).
Ceci contredit la minimalité de πu. C’est donc que πu n’a pas
de facteur irréductible de degré 2, donc est scindé dans R[X],
ce qui justifie la propriété annoncée.

7.5 Annexe : normes subordonnées et rayons spectraux

On considère E un espace euclidien, on note ‖ · ‖ la
norme euclidienne, et ~ · ~ la norme d’opérateur sur
L(E), subordonnée à ‖ · ‖.
Lemme. Pour tout x ∈ E,

‖x‖ = Sup
‖y‖61

〈x, y〉

Preuve.
• Pour tout y tel que ‖y‖ 6 1, on a :

〈x, y〉 6 ‖x‖‖y‖ Cauchy-Schwarz
6 ‖x‖ indépendant de y

donc Sup
‖y‖61

〈x, y〉 6 ‖x‖.

• Le cas où y =
x

‖x‖
fournit un cas d’égalité dans l’inéga-

lité précédente, donc :

Sup
‖y‖61

〈x, y〉 = ‖x‖

Proposition. Pour u ∈ L(E), ~u∗~ = ~u~.

Preuve. Si u = 0L(E), alors u∗ = 0L(E) et l’égalité est triviale.
On suppose dorénavant u 6= 0L(E).

• Pour tout x ∈ E :

‖u(x)‖2 = 〈u(x), u(x)〉
= 〈u∗(u(x)), x〉 par définition de l’adjoint
6 ‖u∗ ◦ u(x)‖ ‖x‖ par Cauchy-Schwarz
6 ~u∗ ◦ u~ ‖x‖ ‖x‖ par déf. de ~ · ~

6 ~u∗~ ~u~ ‖x‖2 par sous-multiplicativité

que l’on peut réécrire :

‖u(x)‖ 6
»

~u∗~ ~u~ ‖x‖

On a donc, par définition de la norme d’opérateur :

~u~ 6
»

~u∗~ ~u~

et donc, comme ~u~ 6= 0 :»
~u~ 6

»
~u∗~

c’est-à-dire, en élevant au carré :

~u~ 6 ~u∗~

• En appliquant ce qui précède à u∗, on a aussi :

~u∗~ 6 ~u∗∗~

= ~u~ car u∗∗ = u

On a montré que ~u~ = ~u∗~.

Définition. Pour u ∈ L(E), on définit le rayon spec-
tral :

ρ(u) = Max{|λ|, λ ∈ Sp(u)}

Proposition. On dispose des résultat suivants :

1. Soit u ∈ S(E). Alors :

Max
(

Sp(u)
)
= Sup

x 6=0E

〈x, u(x)〉
‖x‖2

2. Si de plus u ∈ S+(E),

Max
(

Sp(u)
)
= ρ(u) = ~u~

3. Pour u ∈ L(E) :

~u~2 = ~u∗ ◦ u~ = ρ(u∗ ◦ u)

Preuve.

1. Notons λ1 6 · · · 6 λn les valeurs propres de u, classées
par ordre croissant, répétées selon leurs mulitiplicités.
Comme u est autoadjoint, il existe une base orthonor-
mée B = (e1, . . . , en) de vecteurs propres, associés aux
valeurs propres λ1, . . . , λn.
Rappelons qu’en base orthonormée, les coordonnées de
x sont (〈x, e1〉, . . . , 〈x, en〉).
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• Pour tout x ∈ E non nul :

〈x, u(x)〉
‖x‖2

=
1

‖x‖2
〈

n∑
i=1

〈x, ei〉ei, u
( n∑
j=1

〈x, ej〉ej
)
〉

=
1

‖x‖2

n∑
i=1

n∑
j=1

〈x, ei〉〈x, ej〉〈ei, u(ej)〉

par linéarité de u
et bilinéarité du p.s.

=
1

‖x‖2

n∑
i=1

n∑
j=1

〈x, ei〉〈x, ej〉〈ei, λjej〉

=
1

‖x‖2

n∑
i=1

〈x, ei〉2λi car 〈ei, ej〉 = δij

6
1

‖x‖2
λn

n∑
i=1

〈x, ei〉2

= λn indépendant de x

donc Sup
x 6=0E

〈x, u(x)〉
‖x‖2

6 λn = Max Sp(u).

• Pour x = en, on a :

〈x, u(x)〉
‖x‖2

=
〈en, u(en)〉

‖en‖2

=
〈en, λnen〉

‖en‖2

= λn

= Max Sp(u)

Ce qui montre que le Sup étudié est un max, et
qu’il vaut Max Sp(u).

2. On suppose maintenant u autoadjoint positif. Par ca-
ractérisation spectrale, on a Sp(u) ⊂ R+ et donc
Max Sp(u) = ρ(u).

• Pour tout x ∈ E non nul :

0 6
〈x, u(x)〉
‖x‖2

6
1

‖x‖2
‖x‖ ‖u(x)‖ Cauchy-Schwarz

1

‖x‖
~u~ ‖x‖

par déf. de norme d’opérateur
= ~u~ indépendant de x

donc Sup
x 6=0E

〈x, u(x)〉
‖x‖2

6 ~u~, c’est-à-dire :

Max Sp(u) 6 ~u~

par le point précédent.

• Pour tout x ∈ E non nul, comme (e1, . . . , en) est

orthonormée :

‖u(x)‖2 = 〈
n∑

i=1

〈u(x), ei〉ei,
n∑

j=1

〈u(x), ej〉ej〉

= 〈
n∑

i=1

〈x, u(ei)〉ei,
n∑

j=1

〈x, u(ej)〉ej〉

car u autoadjoint

= 〈
n∑

i=1

λi〈x, ei〉ei,
n∑

j=1

λj〈x, ej〉ej〉

car u(ei) = λiei

=

n∑
i=1

n∑
j=1

λiλj〈x, ei〉〈x, ej〉〈ei, ej〉

par bilinéarité

= 〈
n∑

i=1

λ2i 〈x, ei〉2

car B orthonormée

6 λ2n

n∑
i=1

〈x, ei〉2

= λ2n‖x‖2

Ainsi, par positivité de λn, ‖u(x)‖ 6 λn‖x‖, ce qui
signifie, par définition de la norme d’opérateur :

~u~ 6 λn

c’est-à-dire :

~u~ 6 Max Sp(u)

On a montré que :

Max
(

Sp(u)
)
= ρ(u) = ~u~

3. Cette fois-ci, l’endomorphisme u est quelconque.

• Remarquons tout d’abord que u? ◦ u est autoad-
joint positif :

(u? ◦ u)? = u? ◦ u??

= u? ◦ u

et, pour tout x ∈ E :

〈u? ◦ u(x), x〉 = 〈u(x), u(x)〉

= ‖u(x)‖2

> 0

• Par les deux points précédents, on a donc :

~u? ◦ u~ = ρ(u? ◦ u) par le point 2
= Max Sp(u? ◦ u) par le point 2

= Sup
x 6=0

〈x, u? ◦ u(x)
‖x‖2

par le point 1

= Sup
x 6=0

〈u(x), u(x)
‖x‖2

= Sup
x 6=0

‖u(x)‖2

‖x‖2

= ~u~2

par déf. de norme d’opérateur
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Exercices et résultats classiques à connaître

Caractérisation des symétries orthogonales, des projecteurs orthogonaux

320.1
Soit E espace euclidien.
Montrer que les projections orthogonales de E sont les projections qui sont des endomorphismes autoadjoints.

320.2
Soit E espace euclidien.
Montrer que les symétries orthogonales de E sont les isométries vectorielles qui sont des endomorphismes
autoadjoints.

Racine carrée d’une matrice symétrique positive

320.3

(a) Montrer que, pour toute matrice S ∈ S+
n (R), il existe R ∈ S+

n (R) telle que : S = R2

(b) Montrer l’unicité de cette matrice R.

Décomposition polaire d’une matrice inversible

320.4
Montrer que toute matrice A ∈ GLn(R) admet une décomposition polaire :
A = ΩS où Ω ∈ On(R) et S ∈ S++

n (R).

Matrice de Householder

320.5

Si V ∈ Mn,1(R)r {0}, on appelle matrice de Householder de V la matrice : HV = In − 2

‖V ‖2
V V >

Montrer que HV est symétrique et orthogonale, et reconnaître l’endomorphisme qu’elle représente.

Matrice de Hilbert

320.6

On s’intéresse à la matrice de Hilbert H =

(
1

i+ j − 1

)
16i,j6n

.

(a) Pour X = (xi)16i6n ∈ Mn1(R), exprimer X>HX.

(b) Montrer que H est une matrice symétrique, définie positive.
On écrira 1

i+j−1 comme l’intégrale sur [0, 1] d’un polynôme simple.

Une formule variationnelle

320.7
Soit u un endomorphisme autoadjoint d’un espace euclidien. Montrer que :

Sup
x6=0E

〈x, u(x)〉
‖x‖2

= Max Sp(u)
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Exercices du CCINP

320.8 63

Soit E un espace euclidien muni d’un produit scalaire noté ( | ).
On pose ∀x ∈ E, ||x|| =

√
(x|x).

Pour tout endomorphisme u de E, on note u∗ l’adjoint de u.

1. Un endomorphisme u de E vérifiant ∀x ∈ E, (u(x)|x) = 0 est-il néces-
sairement l’endomorphisme nul ?

2. Soit u ∈ L(E).
Prouver que les trois assertions suivantes sont équivalentes :

i. u ◦ u∗ = u∗ ◦ u.
ii. ∀(x, y) ∈ E2, (u(x)|u(y)) = (u∗(x)|u∗(y)).
iii. ∀x ∈ E, ||u(x)|| = ||u∗(x)||.

320.9 66

1. Soit A ∈ Sn (R).
Prouver que A ∈ S+

n (R) ⇐⇒ sp(A) ⊂ [0,+∞[.

2. Prouver que ∀A ∈ Sn (R), A2 ∈ S+
n (R).

3. Prouver que ∀A ∈ Sn (R), ∀B ∈ S+
n (R), AB = BA =⇒ A2B ∈ S+

n (R).

4. Soit A ∈ S+
n (R).

Prouver qu’il existe B ∈ S+
n (R) telle que A = B2.

320.10 68.2

Soit la matrice A =

 1 −1 1
−1 1 −1
1 −1 1

 .

1. Démontrer que A est diagonalisable de quatre manières :

(a) sans calcul,

2. On note f l’endomorphisme de R3 dont la matrice dans la base cano-
nique de R3 est A.

Trouver une base orthonormée dans laquelle la matrice de u est diago-
nale.

320.11 78
Soit E un espace euclidien de dimension n et u un endomorphisme de E.
On note (x|y) le produit scalaire de x et de y et ||.|| la norme euclidienne
associée.

1. Soit u un endomorphisme de E, tel que : ∀x ∈ E, ||u(x)|| = ||x||.

(a) Démontrer que : ∀(x, y) ∈ E2 (u(x)|u(y)) = (x|y).
(b) Démontrer que u est bijectif.

2. On note O(E) l’ensemble des isométries vectorielles de E,
c’est-à-dire O(E) = {u ∈ L(E), ∀x ∈ E, ‖u(x)‖ = ‖x‖}.
Démontrer que O(E), muni de la loi ◦, est un groupe.

3. Soit u ∈ L(E). Soit e = (e1, e2, ..., en) une base orthonormée de E.
Prouver que : u ∈ O(E) ⇐⇒(u(e1), u(e2), ..., u(en)) est une base ortho-
normée de E.

320.12 101.22

2. On considère la matrice A =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

.

(a) Justifier, sans calcul, que la matrice A est diagonalisable.

(b) Prouver que −1

2
est valeur propre de A et déterminer le sous-espace

propre associé.
(c) Déterminer une matrice P inversible orthogonale et une matrice D

diagonale de M3(R) telles que D = P−1AP A = PDP>.
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Exercices

320.13

Soit E un espace euclidien et u ∈ L(E). Montrer que :

(a) Ker(u∗) = (Imu)⊥

(b) Im(u∗) = (Keru)⊥

320.14

Dans E espace euclidien non nul et u ∈ S(E). Montrer que :

Sup
‖x‖=1

‖u(x)‖ = Max
λ∈Sp(u)

|λ|

320.15
Soit E espace euclidien de dimension n > 2, a un vecteur unitaire et λ ∈ R.
Pour x ∈ E, on pose :

f(x) = x+ λ〈x, a〉a

(a) Montrer que f est autoadjoint.

(b) Déterminer les éléments propres de f .

320.16

Montrer que On(R) est compact.

320.17

Soit E un espace euclidien et u ∈ L(E). Montrer que :

(a) Ker(u∗) = (Imu)⊥

(b) Im(u∗) = (Keru)⊥

320.18
On travaille dans un espace euclidien de dimension 3 muni d’une base ortho-
normée directe. Décrire les endomorphismes représentés par les matrices :

(a) A =
1

3

1 2 2
2 1 −2
2 −2 1


(b) B =

1

2

 1 −
√
2 1√

2 0 −
√
2

1
√
2 1


(c) C =

0 0 1
1 0 0
0 1 0


(d) D =

1

9

−8 4 1
4 7 4
1 4 −8


320.19

Orthodiagonaliser :

A =

 2 −1 2
−1 2 2
2 2 −1


320.20

Étudier la transformation géométrique associée à :

M =
1

9

 8 1 −4
−4 4 −7
1 8 4


320.21

Soit u ∈ L(R3) dont la matrice relativement à la base canonique est A =

−1

3

−2 −2 −1
2 −1 −2
−1 2 −2

. Reconnaître u.

320.22
On considère E = Mn(R) muni de son produit scalaire canonique. Soit A,B
deux matrices orthgonales. Montrer que les applications :

M 7→ AM, M 7→ MB, M 7→ AMB
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sont des isométries vectoerielles de E.

Petits problèmes d’entrainement

320.23 -
Soit f une isométrie d’un espace euclidien E. On note Id l’application iden-
tique de E, F = Ker(f − Id) et G le sous-espace supplémentaire orthogonal
de F .

(a) Montrer que, pour tout x, y ∈ E, 〈f(x), f(y)〉 = 〈x, y〉.

(b) Montrer que G est stable par f , et que la restriction de Id−f à G, notée
g, est un automorphisme de G.

(c) On note gn =
1

n

(
Id + f + f2 + · · ·+ fn−1

)
. Exprimer l’application

gn ◦ (Id − f) en fonction de Id, fn et n. En déduire que, pour tout
x ∈ G, gn(x) −−−−−→

n→+∞
0E .

(d) Soit x ∈ E. Montrer que gn(x) −−−−−→
n→+∞

p(x), où p est la projection
orthogonale sur F .

(e) On pose A =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

. Calculer la limite, pour n → +∞,

de :
1

n
(I3 +A+ · · ·+An−1)

320.24 -
Soit n > 3, E = Mn1(R), A et B deux colonnes non colinéaires dans E et :

M = AB> +BA>

(a) Justifier que M est diagonalisable.

(b) Déterminer rg(M) en fonction de A et B.

(c) Déterminer le spectre de M et décrire les sous-espaces propres associés.
On pourra commencer par le cas où (A,B) est une famille orthonormée.

320.25
Soit E un espace euclidien de dimension n > 3, a, b deux vecteurs unitaires
de E, non colinéaires. Pour x ∈ E, on pose :

f(x) = 〈a, x〉a+ 〈b, x〉b

(a) Montrer que f est un endomorphisme autoadjoint de E.

(b) Déterminer noyau et image de f .

(c) Déterminer les éléments propres de f .

320.26
Soit E = Rn[X] muni du produit scalaire défini par :

〈P,Q〉 =
ˆ +∞

−∞
P (t)Q(t)e−t2 dt

(a) Montrer qu’il s’agit bien d’un produit scalaire.

(b) Montrer que f : P 7→ 2XP ′ − P ′′ est un endomorphisme autoadjoint
de E.

(c) Montrer que les valeurs propres de f sont positives, et les déterminer.

320.27

Soit A,B ∈ Mn(R). On note α (resp. β) la plus grande valeur propre de A>A
(resp. B>B). Montrer que :

∀λ ∈ Sp(AB), λ2 6 αβ

320.28
Soit n un entier > 2 et M ∈ Mn(R) définie par :

M =


0 . . . 0 1
...

...
...

0 . . . 0 1
1 . . . 1 1


(a) Justifier que M est diagonalisable et donner dim KerM .
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(b) Donner une base de Ker(M)⊥, et préciser la matrice de l’endomorphisme

induit par M sur Ker(M)⊥ dans cette base.

(c) En déduire le spectre de M .

320.29
Soit A = (aij)ij ∈ Sn(R) une matrice symétrique satisfaisant :

A17 = A19

Montrer que : ∑
16i,j6n

a2ij = rg(A)

320.30

Soit A =


n− 1 −1 · · · −1

−1
. . . . . .

...
...

. . . . . . −1
−1 · · · −1 n− 1

 ∈ Mn(R).

Montrer que A ∈ Sn(R), Sp(A) ⊂ R+ et calculer rg(A).

320.31

Soit E = Rn[X] muni du produit scalaire 〈P,Q〉 =
ˆ 1

0

P (t)Q(t)dt.

(a) Soit u : P 7→
ˆ 1

0

(X+ t)nP (t)dt : montrer que u est un endomorphisme
autoadjoint de E.

(b) En déduire qu’il existe une base orthonormée (P0, . . . , Pn) de E formée
de vecteurs propres de u. On note λ0, . . . , λn les vp associées.

(c) Montrer que :

∀(x, y) ∈ R2, (x+ y)n =

n∑
k=0

λkPk(x)Pk(y)

En déduire tr(u).
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