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MPI 430. Topologie des espaces vectoriels normés

1 Points intérieurs, ouvert, voisinage

1.1 Voisinage d’un point
Définition. Soit (E, ‖ · ‖) un K-espace vectoriel normé, a ∈ E. On dit qu’une partie V de E est un voisinage

de a lorsqu’il existe δ > 0 tel que :
B(a, δ) ⊂ V

où B(a, δ) = {x ∈ E, ‖x− a‖ < δ}.
Remarque.

• L’usage est d’utiliser une boule ouverte, une inégalité stricte.
• On trouve parfois la notation V(a) pour désigner l’ensembles des voisinages de a.

Proposition.

• Si V est un voisinage de a et V ⊂ W alors W est un voisinage de a.

• Une intersection finie de voisinages de a est un voisinage de a.

• Une réunion de voisinages de a est un voisinage de a.

Remarque. Pour la réunion, il suffit en fait qu’un seul ensemble soit un voisinage.

Proposition. Si N et N ′ sont deux normes équivalentes, les voisinages de a dans (E,N) et (E,N ′) sont les
mêmes.

1.2 Ouvert
Définition. Soit (E, ‖ · ‖) un K-espace vectoriel normé. On dit qu’une partie U de E est un ouvert lorsque U

est voisinage de chacun de ses points, i.e. :

∀x ∈ U, ∃δ > 0, B(x, δ) ⊂ U

Remarque. E et ∅ sont ouverts.

Proposition. Une boule ouverte est un ouvert.
Proposition.

• Une réunion d’ouverts est un ouvert : ⋃
i∈I

Ui est ouvert

• Une intersection finie d’ouverts est un ouvert :

U1 ∩ · · · ∩ Up est ouvert

Remarque. L’intérêt de travailler dans un ouvert, c’est que ses éléments ne sont jamais « au bord ».

Proposition. Un produit fini d’ouvert est un ouvert.

1.3 Point intérieur, intérieur
Définition. Soit (E, ‖ · ‖) un K-espace vectoriel normé et A une partie de E. Un point a de E est dit intérieur

à A lorsque A est un voisinage de a, i.e. :

∃δ > 0, B(a, δ) ⊂ A

On appelle intérieur de A l’ensemble Å de tous les points intérieurs à A.
Proposition. A est ouvert si et seulement si Å = A.
Proposition. L’intérieur de A est le plus grand ouvert contenu dans A.
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2 Points adhérents, fermé, densité
2.1 Fermé

Définition. On dit qu’une partie A de E est un fermé lorsque E rA = Ac est un ouvert.
Exemple. E et ∅ sont fermés.
Proposition. Une boule fermée est fermée, une sphère est fermée, un singleton {a} est fermé.
Proposition.

• Une réunion finie de fermés est un fermé.

• Une intersection quelconque de fermés est un fermé.

Proposition. Un produit fini de fermés est un fermé.

2.2 Point adhérent, adhérence, frontière
Définition. Soit A une partie de E. On dit que x ∈ E est adhérent à A lorsque :

∀δ > 0, B(x, δ) ∩A 6= ∅

On appelle adhérence de A l’ensemble A de tous les points adhérents à A.
Proposition. A est fermé si et seulement si A = A.
Proposition. L’adhérence de A est le plus petit fermé contenant A.
Proposition. On dispose de l’équivalence suivante :

x ∈ A ⇐⇒ d(x,A) = 0

Définition. On appelle frontière de A l’ensemble :

Fr(A) = Ar Å

2.3 Densité
Définition. Une partie A de l’espace vectoriel normé (E, ‖·‖) est dite dense dans E lorsque A = E, c’est-à-dire :

• tout élément de E est limite d’une suite d’éléments de A

ou alors

• ∀x ∈ E, ∀r > 0, B(x, r) ∩A 6= ∅.

Exemple. Q est dense dans R.

Exemple. Le sous-espace des fonctions polynomiales est dense dans (C0([a, b],K), ‖ · ‖∞) par le théorème de
Weierstrass.

Exemple. Le sous-espace des fonctions en escalier est dense dans l’ensemble (C0
pm([a, b],K), ‖ · ‖∞) des fonctions

continues par morceaux.

2.4 Caractérisations séquentielles
Proposition. Une partie A de E est un fermé si et seulement si, pour toute suite convergente d’éléments de A,

sa limite est dans A.
Remarque. L’intérêt de travailler dans un fermé, c’est que « quand on y est, on y reste », même en passant à la limite.

Proposition. x est adhérent à A si et seulement s’il existe une suite d’éléments de A qui converge vers x.
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3 Topologie et normes équivalentes
Théorème.

Les notions topologiques étudiées ci-avant sont invariante par passage à une norme équivalente :

• Si A est un ouvert de (E,N1) et N2 équivalente à N1, alors A est un ouvert de (E,N2).

• L’intérieur de A dans (E,N1), lorsque N2 équivalente à N1, est le même que l’intérieur de A dans
(E,N2).

• etc.

4 Topologie induite

4.1 Voisinage relatif, ouvert relatif
Définition. Soit (E, ‖ · ‖) un K-espace vectoriel normé et A une partie quelconque de E. Soit a ∈ A et X ⊂ A.

On dit que X est un voisinage relatif de a dans A s’il existe r > 0 tel que B(a, r) ∩A ⊂ X

Remarque. Ainsi, les voisinages relatifs de a dans A sont les intersections avec A des voisinages de a (dans E).

Définition. On conserve les notations précédentes. On dit que X est un ouvert relatif de A si et seulement
s’il est voisinage relatif de chacun de ses points, c’est-à-dire :

∀a ∈ X, ∃r > 0 t.q. B(a, r) ∩A ⊂ X

Proposition. X est un ouvert relatif de A si et seulement s’il existe U ouvert (de E) tel que X = U ∩A.
Remarque. On dit parfois que U ∩A est la trace laissée par U sur A.

Exemple. Les parties suivantes sont-elles des ouverts relatifs de [0, 1] ?

1. [0, 1]

2. {0}

3. [0, 1/2]

4. [0, 3/4[

5. [0, 1]r [1/2, 3/4]

6. ]0, 1[

7. ]0, 1/2[

4.2 Fermé relatif
Définition. Soit (E, ‖ · ‖) un K-espace vectoriel normé et A une partie quelconque de E. On dit que X ⊂ A est

un fermé relatif de A lorsque ArX est un ouvert relatif de A.
Proposition. X est un fermé relatif de A si et seulement s’il existe F fermé (de E) tel que X = F ∩A.
Remarque. On dit parfois que F ∩A est la trace laissée par F sur A.

Caractérisation séquentielle. X est un fermé relatif de A si et seulement si, pour toute suite (xn)n∈N d’éléments
de X qui converge vers un élément ` de A, alors ` ∈ X.

Exemple. Est-ce que ]−∞, 0[ est un ouvert relatif de R∗ ? un fermé relatif de R∗ ?

Exemple. Dans E = R2, on note O = (0, 0) et a = (1, 1) et on considère A = B(O, 1/4) ∪ B(a, 1/4). Proposer
quatre parties de A qui sont à la fois des ouverts relatifs et des fermés relatifs de A.

4.3 Densité
Définition. On dit que X ⊂ A est dense dans A lorsque tout élément de A est limite d’une suite d’éléments

de X.
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Exercices et résultats classiques à connaître

Adhérence et distance

430.1
Soit A une partie non vide de E espace normé, et x ∈ E.

(a) Justifier l’existence de d(x,A) = Inf
a∈A

‖x− a‖ ∈ R+.

(b) Montrer que :
x ∈ A ⇐⇒ d(x,A) = 0

Densité des matrices inversibles

430.2
Pour K = R ou K = C, montrer que GLn(K) est dense dans Mn(K).

Les sous-groupes de R

430.3
Soit H un sous-groupe non nul de (R,+).

(a) Justifier l’existence de α = Inf{x ∈ H, x > 0}.

(b) On suppose α > 0. Montrer que α ∈ H, puis H = αZ.

(c) On suppose α = 0. Montrer que H est dense dans R.

(d) Montrer que Z+2πZ est un sous-groupe de (R,+). En déduire que {cos(n), n ∈ N} est dense dans [−1, 1].

Sous-espace vectoriel d’intérieur non vide

430.4

Soit E un espace vectoriel normé, et F un sous-espace vectoriel de E. On suppose que F̊ 6= ∅. Montrer que
F = E.
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Exercices du CCINP

430.5 1.3

On note E l’espace vectoriel des applications continues sur [0, 1] à valeurs
dans R.

On pose : ∀f ∈ E, ‖f‖∞ = Sup
t∈[0,1]

|f(t)| et ‖f‖1 =

ˆ 1

0

|f(t)|dt.

3. Dans cette question, on munit E de la norme ‖ · ‖1.

Soit c :

ß
[0, 1] → R
x 7→ 1

On pose : ∀n ∈ N∗, fn(x) =


nx si 0 6 x 6

1

n

1 si 1

n
< x 6 1

(a) Soit n ∈ N∗. Calculer ‖fn − c‖1.

(b) On pose F = {f ∈ E, f(0) = 0}.
On note F l’adhérence de F .
Prouver que c ∈ F .
F est-elle une partie fermée de E pour la norme ‖ · ‖1 ?

430.6 34

Soit A une partie non vide d’un R-espace vectoriel normé E.

1. Rappeler la définition d’un point adhérent à A, en termes de voisinages
ou de boules.

2. Démontrer que : x ∈ Ā ⇐⇒ ∃(xn)n∈N telle que, ∀n ∈ N, xn ∈ A et
lim

n→+∞
xn = x.

3. Démontrer que, si A est un sous-espace vectoriel de E, alors Ā est un
sous-espace vectoriel de E.

4. Soit B une autre partie non vide de E. Montrer que A×B = A×B.

430.7 37.13

On note E l’espace vectoriel des applications continues de [0; 1] dans R.

On pose : ∀ f ∈ E, N∞(f) = Sup
x∈[0;1]

|f(x)| et N1(f) =

ˆ 1

0

|f(t)|dt.

1. (b) Démontrer qu’il existe k > 0 tel que, pour tout f de E, N1(f) ≤
kN∞(f).

(c) Démontrer que tout ouvert pour la norme N1 est un ouvert pour
la norme N∞.

430.8 44
Soit E un espace vectoriel normé. Soient A et B deux parties non vides de E.

1. (a) Rappeler la caractérisation de l’adhérence d’un ensemble à l’aide
des suites.

(b) Montrer que : A ⊂ B =⇒ A ⊂ B.

2. Montrer que : A ∪B = A ∪B
Remarque : une réponse sans utiliser les suites est aussi acceptée.

3. (a) Montrer que : A ∩B ⊂ A ∩B.
(b) Montrer, à l’aide d’un exemple, que l’autre inclusion n’est pas for-

cément vérifiée (on pourra prendre E = R).

430.9 45
Les questions 1. et 2. sont indépendantes.

Soit E un R-espace vectoriel normé. On note ‖ ‖ la norme sur E.
Soit A une partie non vide de E.
On note A l’adhérence de A.

1. (a) Donner la caractérisation séquentielle de A.
(b) Prouver que, si A est convexe, alors A est convexe.

2. On pose : ∀x ∈ E, dA(x) = Inf
a∈A

‖x− a‖.

(a) Soit x ∈ E. Prouver que dA(x) = 0 =⇒ x ∈ A.
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(b) On suppose que A est fermée et que : ∀(x, y) ∈ E2, ∀t ∈ [0, 1],

dA(tx+ (1− t)y) 6 tdA(x) + (1− t)dA(y).
Prouver que A est convexe.

Exercices

430.10

Montrer que Z est un fermé de R :

• en utilisant la caractérisation séquentielle ;

• en étudiant son complémentaire.

430.11

Soit E un espace vectoriel normé, et F un sous-espace vectoriel de E. Montrer
que F est un sous-espace vectoriel de E.

430.12

Soit A une partie de R non vide et majorée. Montrer que :

Sup(A) ∈ A

430.13

Montrer que l’adhérence d’une partie convexe est convexe.

430.14

Montrer que l’ensemble des matrices diagonalisables est dense dans Mn(C).

430.15

Soit n ∈ N∗. Le groupe linéaire GLn(R) est-il un fermé de Mn(R) ? un ouvert
de Mn(R) ?

430.16

Déterminer Fr(Q).

430.17
Dans (R, | · |), montrer que :

[0, 1[ = [0, 1] et
˚̄

[0, 1[ = ]0, 1[

Petits problèmes d’entrainement

430.18 -

On travaille dans E = C0([0, 1],R) muni de la norme ‖ · ‖∞, et on définit :

A =
{
f ∈ E, f(0) = 0 et

ˆ 1

0

f(t)dt > 1
}

(a) Montrer que A est un fermé.

(b) Vérifier que, pour tout f ∈ A, ‖f‖∞ > 1.

(c) Calculer d(0E , A).
On peut se poser la question : ce résultat est-il en contradiction avec le fait
que A est fermé ?

430.19 -

(a) Montrer que les parties A = {(x, y) ∈ R2, xy = 1} et B = {0} × R sont
fermées dans R2.

(b) Observer que A+B n’est pas fermée.

430.20
Soit N1 et N2 deux normes sur un même espace vectoriel E. On suppose qu’il
existe α > 0 tel que :

∀x ∈ E, N1(x) 6 αN2(x)

Montrer que tout ouvert de (E,N1) est ouvert de (E,N2).

430.21
Dans E espace normé, montrer que l’adhérence d’une boule ouverte est la
boule fermée de même centre, de même rayon.
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430.22

On considère E le R-espace vectoriel des fonctions continues sur R, à valeurs
réelles, ayant pour limite 0 en ±∞. On le munit de la norme ‖ · ‖∞, toute
fonction de E étant bornée sur R.
On considère F le sous-espace vectoriel constitué des fonctions à support

compact, i.e. :

f ∈ F ⇐⇒ ∃M > 0, ∀x ∈ R r [−M,M ], f(x) = 0

Montrer que F est dense dans E.

430.23
Montrer que l’intérieur d’une partie convexe est convexe.
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