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Points intérieurs, ouvert, voisinage

Voisinage d’un point

Définition. Soit (E, | - ||) un K-espace vectoriel normé, a € E. On dit qu’une partie V' de F est un voisinage
de a lorsqu’il existe § > 0 tel que :
B(a,6) CV
ou B(a,d) ={z € E, ||z —a] < d}.
Remarque.
o L’usage est d’utiliser une boule ouverte, une inégalité stricte.

o On trouve parfois la notation V(a) pour désigner ’ensembles des voisinages de a.
Proposition.

e SiV est un voisinage de a et V- C W alors W est un voisinage de a.

¢ Une intersection finie de voisinages de a est un voisinage de a.

e Une réunion de voisinages de a est un voisinage de a.

Remarque. Pour la réunion, il suffit en fait qu’un seul ensemble soit un voisinage.

Proposition. Si N et N’ sont deux normes équivalentes, les voisinages de a dans (E,N) et (E,N’) sont les
meémes.

Ouvert

Définition. Soit (E, | - ||) un K-espace vectoriel normé. On dit qu’une partie U de E est un ouvert lorsque U
est voisinage de chacun de ses points, i.e. :

Ve e U, 36 >0, B(z,0) CU

Remarque. FE et @ sont ouverts.
Proposition. Une boule ouverte est un ouvert.

Proposition.

¢ Une réunion d’ouverts est un ouvert :
U U; est ouvert
iel

« Une intersection finie d’ouverts est un ouvert :

Uin---NU, est ouvert

Remarque. L’intérét de travailler dans un ouvert, c’est que ses éléments ne sont jamais « au bord ».

Proposition. Un produit fini d’ouvert est un ouvert.

Point intérieur, intérieur

Définition. Soit (E, | - ||) un K-espace vectoriel normé et A une partie de E. Un point a de F est dit intérieur
a A lorsque A est un voisinage de a, i.e. :

36 >0, B(a,6) C A

On appelle intérieur de A l’ensemble A de tous les points intérieurs a A.
Proposition. A est ouvert si et seulement si A=A

Proposition. L’intérieur de A est le plus grand ouvert contenu dans A.
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Points adhérents, fermé, densité

Fermé

Définition. On dit qu’une partie A de F est un fermé lorsque F \ A = A€ est un ouvert.
Exemple. F et @ sont fermés.
Proposition. Une boule fermée est fermée, une sphére est fermée, un singleton {a} est fermé.
Proposition.

e Une réunion finie de fermés est un fermé.

e Une intersection quelconque de fermés est un fermé.

Proposition. Un produit fini de fermés est un fermé.

Point adhérent, adhérence, frontiére

Définition. Soit A une partie de E. On dit que x € E est adhérent a A lorsque :
V6 >0, B(z,0)NA# @

On appelle adhérence de A I'ensemble A de tous les points adhérents & A.
Proposition. A est fermé si et seulement si A = A.
Proposition. L’adhérence de A est le plus petit fermé contenant A.

Proposition. On dispose de I’équivalence suivante :

r€A < d(z,A) =0

Définition. On appelle frontiére de A ’ensemble :

Densité

Définition. Une partie A de I’espace vectoriel normé (E, ||-||) est dite dense dans E lorsque A = E, c’est-a-dire :
o tout élément de E est limite d’une suite d’éléments de A
ou alors

e Vx € E,Vr>0, Bz,r)NA# @.

Exemple. Q est dense dans R.

Exemple. Le sous-espace des fonctions polynomiales est dense dans (C°([a,b],K),] - |l) par le théoréme de
Weierstrass.
Exemple. Le sous-espace des fonctions en escalier est dense dans ensemble (CJ,,([a, ], K), || - [|o) des fonctions

continues par morceaux.

Caractérisations séquentielles

Proposition. Une partie A de E est un fermé si et seulement si, pour toute suite convergente d’éléments de A,
sa limite est dans A.

Remarque. L’intérét de travailler dans un fermé, c’est que « quand on y est, on y reste », méme en passant a la limite.

Proposition. 1z est adhérent a A si et seulement s’il existe une suite d’éléments de A qui converge vers x.
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Topologie et normes équivalentes

Théoréme.

Les notions topologiques étudiées ci-avant sont invariante par passage a une norme équivalente :
o Si A est un ouvert de (E, N1) et Ny équivalente & Ny, alors A est un ouvert de (E, Na).

o L’intérieur de A dans (E, Ny), lorsque Ny équivalente & Ny, est le méme que l'intérieur de A dans
(E, Na).

e etc.

Topologie induite

Voisinage relatif, ouvert relatif

Définition. Soit (E, || - ||) un K-espace vectoriel normé et A une partie quelconque de E. Soit a € A et X C A.
On dit que X est un voisinage relatif de a dans A §’il existe r > 0 tel que B(a,r)NA C X

Remarque. Ainsi, les voisinages relatifs de a dans A sont les intersections avec A des voisinages de a (dans E).

Définition. On conserve les notations précédentes. On dit que X est un ouvert relatif de A si et seulement
s’il est voisinage relatif de chacun de ses points, c’est-a-dire :

VYa € X, Ir >0t.q. Bla,ry)NACX

Proposition. X est un ouvert relatif de A si et seulement s’il existe U ouvert (de E) tel que X = U N A.
Remarque. On dit parfois que U N A est la trace laissée par U sur A.
Exemple. Les parties suivantes sont-elles des ouverts relatifs de [0,1]?

1. [0,1] 3. [0,1/2] 5. [0,1] ~ [1/2,3/4] 7.10,1/2]
2. {0} 4. [0,3/4] 6. ]0,1]

Fermé relatif

Définition. Soit (E, || - ||) un K-espace vectoriel normé et A une partie quelconque de E. On dit que X C A est
un fermé relatif de A lorsque A \ X est un ouvert relatif de A.

Proposition. X est un fermé relatif de A si et seulement s’il existe F' fermé (de E) tel que X = F N A.
Remarque. On dit parfois que F'N A est la trace laissée par F sur A.

Caractérisation séquentielle. X est un fermé relatif de A si et seulement si, pour toute suite (z,,),en d’éléments
de X qui converge vers un élément ¢ de A, alors £ € X.

Exemple. Est-ce que |—oo,0[ est un ouvert relatif de R* ? un fermé relatif de R* ?

Exemple. Dans E = R?, on note O = (0,0) et a = (1,1) et on considére A = B(O,1/4) U B(a,1/4). Proposer
quatre parties de A qui sont a la fois des ouverts relatifs et des fermés relatifs de A.

Densité

Définition. On dit que X C A est dense dans A lorsque tout élément de A est limite d’une suite d’éléments
de X.
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Exercices et résultats classiques a connaitre

Adhérence et distance

Soit A une partie non vide de E espace normé, et x € E.

(a) Justifier 'existence de d(x, A) = In£ |z — al| € Ry.
ac

(b) Montrer que : B
re€A = d(z,A)=0

Densité des matrices inversibles

Pour K =R ou K = C, montrer que GL,,(K) est dense dans M,,(K).

Les sous-groupes de R

Soit H un sous-groupe non nul de (R, +).
(a) Justifier 'existence de o = Inf{z € H, = > 0}.
(b) On suppose o > 0. Montrer que o € H, puis H = aZ.
)
)

(¢) On suppose a = 0. Montrer que H est dense dans R.

(d) Montrer que Z+27Z est un sous-groupe de (R, +). En déduire que {cos(n), n € N} est dense dans [—1,1].

Sous-espace vectoriel d’intérieur non vide

Soit E un espace vectoriel normé, et F' un sous-espace vectoriel de E. On suppose que a % @. Montrer que

F=FE.
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'Exercices du CCINP |

Grp 1.3

On note E Despace vectoriel des applications continues sur [0,1] & valeurs
dans R.

1
On pose v/ € E, | fllw = Sup |f0)] et |71 = [ 17(0)]at.
te[0,1] 0

3. Dans cette question, on munit E de la norme || - ||;.

Soit ¢ : { 0.1 - R
T — 1

. 1

nr si0<z<—

On pose : Vn € N*, fn(z) = 1 n

1 si—<ax<1

n

(a) Soit n € N*. Calculer | f,, — cl|1.

(b) On pose F ={f € E, f(0) =0}.
On note F' I'adhérence de F.
Prouver que ¢ € F.
F est-elle une partie fermée de E pour la norme || - ||1 7

Grp 34

Soit A une partie non vide d’un R-espace vectoriel normé F.

1. Rappeler la définition d’un point adhérent & A, en termes de voisinages
ou de boules.

2. Démontrer que : x € A <= I(z,)nen telle que, Vn € Nyz,, € A et

lim =z, = x.
n—4oo

3. Démontrer que, si A est un sous-espace vectoriel de F, alors A est un
sous-espace vectoriel de F.

4. Soit B une autre partie non vide de E. Montrer que A x B = A x B.

Grp 37.13

430.7

On note E l'espace vectoriel des applications continues de [0; 1] dans R.

On pose :V f € E, Noo(f) = Sup |f(x)| et N1(f / |f(®)|dt.
z€[0;1]

1. (b) Démontrer qu'il existe k > 0 tel que, pour tout f de E, Ni(f) <
kENoo(f)-

(c) Démontrer que tout ouvert pour la norme N; est un ouvert pour
la norme N

Soit F un espace vectoriel normé. Soient A et B deux parties non vides de E.

Grp 44

1. (a) Rappeler la caractérisation de I’adhérence d’un ensemble & 'aide
des suites.

(b) Montrer que : AC B= A C B.
2. Montrer que : AUB=AUB

Remarque : une réponse sans utiliser les suites est aussi acceptée.
3. (a) Montrer que: ANB C ANB.

(b) Montrer, a I'aide d’un exemple, que lautre inclusion n’est pas for-
cément vérifiée (on pourra prendre F = R).

GNp 45

Les questions 1. et 2. sont indépendantes.
Soit E un R-espace vectoriel normé. On note || || la norme sur E.

Soit A une partie non vide de E.
On note A I'adhérence de A.

1. (a) Donner la caractérisation séquentielle de A.

(b) Prouver que, si A est convexe, alors A est convexe.

2. On pose : Vo € E, da(x) = I££ |z — all.

(a) Soit z € E. Prouver que da(z) =0 =z € A.

n
(=
N
(-]

IdW
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(b) On suppose que A est fermée et que : V(z,y) € E?, Vvt € [0,1],
da(tr + (1 = t)y) <tda(z) + (1 —t)da(y).
Prouver que A est convexe.

'Exercices |

Montrer que Z est un fermé de R :

o en utilisant la caractérisation séquentielle ;

e en étudiant son complémentaire.

430.11

Soit F un espace vectoriel normé, et F' un sous-espace vectoriel de E. Montrer
que F' est un sous-espace vectoriel de F.

430.12

Soit A une partie de R non vide et majorée. Montrer que :

Sup(A) € A

430.13

Montrer que l'adhérence d’une partie convexe est convexe.

430.14

Montrer que ’ensemble des matrices diagonalisables est dense dans M., (C).

430.15

Soit n € N*. Le groupe linéaire GL,,(R) est-il un fermé de M, (R) ? un ouvert
de M,,(R)?

430.16
Déterminer Fr(Q).

Dans (R,| - |), montrer que :

o
—

[0,1[=[0,1] et [0,1] =]0,1]

Petits problemes d’entrainement

[15018] #

On travaille dans E = C%([0, 1],R) muni de la norme || - ||, et on définit :

A={f€E, f(0)=0c¢t /Olf(t)dt>1}

a) Montrer que A est un fermé.

(
(b
(c) Calculer d(Og, A).

On peut se poser la question :
que A est fermé ?

[5019] #

(a) Montrer que les parties A = {(z,y) € R?, 2y =1} et B = {0} x R sont
fermées dans R?.

)
)

Vérifier que, pour tout f € A, || f]leo > 1.

ce résultat est-il en contradiction avec le fait

(b) Observer que A + B n’est pas fermée.

Soit N7 et Ny deux normes sur un méme espace vectoriel E. On suppose qu’il
existe a > 0 tel que :
Vo € E, Ni(z) < aNz(z)

Montrer que tout ouvert de (E, Ny) est ouvert de (E, Na).

Dans E espace normé, montrer que l'adhérence d’une boule ouverte est la
boule fermée de méme centre, de méme rayon.

n
(=
N
(-]

IdW
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On considere E' le R-espace vectoriel des fonctions continues sur R, a valeurs
réelles, ayant pour limite 0 en £oo. On le munit de la norme || - ||, toute
fonction de E étant bornée sur R.

On considére F' le sous-espace vectoriel constitué des fonctions a support

compact, i.e. :
feF < IM>0,Vr eR~[-M,M], f(x)=0

Montrer que F' est dense dans F.

Montrer que 'intérieur d’une partie convexe est convexe.

n
(=
N
(-]

IdW
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