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Dans ce chapitre, sauf mention contraire, E et F désigne deux espaces vectoriels normés sur K, où K = R ou C.

1 Limite
1.1 Définition, propriétés

Définition. Soit f : A ⊂ E → F , et a ∈ A. On dit que f a pour limite b en a, et on note f(x) −−−→
x→a

b,
lorsque :

∀ε > 0, ∃η > 0, ∀x ∈ A, ‖x− a‖E 6 η =⇒ ‖f(x)− b‖F 6 ε

Proposition. La limite de f en a, si elle existe, est unique.
Proposition. L’existence et la valeur de la limite sont inchangées par passage à d’autres normes sur E et F ,

lorsqu’elles sont équivalentes aux normes initiales.
Remarque. On peut reformuler la définition en termes de boules. f(x) −−−→

x→a
b signifie :

∀ε > 0, ∃η > 0, ∀x ∈ A ∩BF (a, η), f(x) ∈ BF (b, ε)

Définition. Soit f : A ⊂ E → F . On dit que f(x) tend vers 0 lorsque ‖x‖ → +∞, et on note f(x) −−−−−−→
‖x‖→+∞

0F

lorsque :
∀ε > 0, ∃M ∈ R, ∀x ∈ A, ‖x‖ > M =⇒ ‖f(x)‖F 6 ε

1.2 Caractérisation séquentielle
Proposition. Soit f : A ⊂ E → F , et a ∈ A et b ∈ F . f a pour limite b en a si et seulement si, pour toute

suite (xn)n∈N d’éléments de A qui converge vers a, la suite
(
f(xn)

)
n∈N

converge vers b.

1.3 Cas particulier de R

Remarque. Lorsque E = R on peut envisager les limites lorsque x → ±∞, et lorsque F = R, on peut envisager
des limites infinies, même s’il serait abusif de dire que +∞ est adhérent à ]−∞,+∞[. On peut donc adapter les
définitions vues en première année.

Définition. Soit f : A ⊂ R → F une fonction de la variable réelle, où A n’est pas majorée. On dit que
f(x) −−−−−→

x→+∞
b lorsque :

∀ε > 0, ∃M ∈ R, ∀x ∈ A, x > M =⇒ ‖f(x)− b‖ 6 ε

Définition. Soit f : A ⊂ E → R une fonction numérique réelle, et a ∈ A. On dit que f(x) −−−→
x→a

+∞ lorsque :

∀M ∈ R, ∃η > 0, ∀x ∈ A, ‖x− a‖ 6 η =⇒ f(x) > M

1.4 Opérations sur les limites
Proposition. Soit f, g : A ⊂ E → F deux fonctions, λ, µ ∈ K deux scalaires. Soit a ∈ A.

• Si f(x) −−−→
x→a

b et g(x) −−−→
x→a

c, alors (λf + µg)(x) −−−→
x→a

λb+ µc.

2/9 http://mpi.lamartin.fr 2025-2026

http://mpi.lamartin.fr


2
0
2
6

MPI 440. Limite, continuité dans un espace vectoriel normé

Proposition. Soit f : A ⊂ E → F une fonction, ϕ : A ⊂ E → K une fonction numérique. Soit a ∈ A.

• Si f(x) −−−→
x→a

b et ϕ(x) −−−→
x→a

λ, alors (ϕf)(x) −−−→
x→a

λb.

• Si f(x) −−−→
x→a

0F et λ bornée au voisinage de a, on écrit :

‖λ(x)f(x)‖ 6 M‖f(x)‖ −−−→
x→a

0R

pour conclure que λ(x)f(x) −−−→
x→a

0F .

• Si f est bornée au voisinage de a, λ(x) −−−→
x→a

0K, on écrit :

‖λ(x)f(x)‖ 6 ‖λ(x)‖M −−−→
x→a

0R

pour conclure que λ(x)f(x) −−−→
x→a

0F .

Proposition. Soit f, g : A ⊂ E → K deux fonctions numériques et a ∈ A.

• Si f(x) −−−→
x→a

b et g(x) −−−→
x→a

c, alors (f × g)(x) −−−→
x→a

b× c.

Proposition. Soit f : A ⊂ E → F et g : B ⊂ F → G deux fonctions telles que f(A) ⊂ B. Soit a ∈ A et b ∈ B.

• Si f(x) −−−→
x→a

b et g(x) −−−→
x→b

c, alors g ◦ f(x) −−−→
x→a

c.

1.5 Limite par coordonnées, limite des fonctions à valeurs dans un espace produit
Définition. Soit F est un espace vectoriel de dimension finie p, muni d’une base C = (f1, . . . , fp). Soit g : A ⊂

E → F . À x ∈ A fixé, g(x) s’écrit de façon unique sous la forme :

g(x) = g1(x)f1 + g2(x)f2 + · · ·+ gp(x)fp

où (g1(x), g2(x), . . . , gp(x)) est le p-uplet des coordonnées de g(x) dans la base C.
Pour chaque k ∈ {1, . . . , p}, la fonction numérique gk est la k-ème application coordonnée de g dans
la base C.

Théorème.

Avec les notations précédentes, et avec ` ∈ F dont les coordonnées sont (`1, `2, . . . , `p), on a :

g(x) −−−→
x→a

` ⇐⇒ ∀k ∈ {1, . . . , p}, gk(x) −−−→
x→a

`k

Remarque. Ces dernières limites sont des limites dans K.

Proposition. Soit g : A ⊂ E → F où F = F1 × · · · × Fp. On peut écrire, pour tout x ∈ A :

g(x) =
(
g1(x), . . . , gp(x)

)
où les fonctions gk sont les applications composantes de g.
Pour ` = (`1, . . . , `p) ∈ F , on a :

g(x) −−−→
x→a

` ⇐⇒ ∀k ∈ {1, . . . , p}, gk(x) −−−→
x→a

`k

Remarque. Ces dernières limites sont des limites dans les espaces Fk.
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2 Continuité
2.1 Définition

Définition. Soit f : A ⊂ E → F et a ∈ A. On dit que f est continue en a lorsque :

f(x) −−−→
x→a

f(a)

On dit que f est continue sur A lorsque f est continue en tout point de A.
Remarque. La continuité en un point est une propriété locale.

2.2 Caractérisation séquentielle
Proposition. Soit f : A ⊂ E → F et a ∈ A. f est continue en a si et seulement si, pour toute suite (xn)n∈N

d’éléments de A qui converge vers a, la suite
(
f(xn)

)
n∈N

converge vers f(a).

2.3 Opérations sur les fonctions continues
Proposition. Soit f, g : A ⊂ E → F deux fonctions, λ, µ ∈ K deux scalaires et ϕ : A ⊂ E → K une fonction

numérique.

• Si f et g sont continues en a ∈ A (resp. sur A), alors λf + µg est continue en a (resp. sur A).

• Si f et ϕ sont continues en a ∈ A (resp. sur A), alors ϕf : x 7→ ϕ(x)f(x) est continue en a (resp. sur A).

Proposition. Soit f, g : A ⊂ E → K deux fonctions numériques.

• Si f et g sont continues en a ∈ A (resp. sur A), alors f ×g : x 7→ f(x)g(x) est continue en a (resp. sur A).

Proposition. Soit f : A ⊂ E → F et g : B ⊂ F → G deux fonctions telles que f(A) ⊂ B.

• Si f est continue en a ∈ A (resp. sur A) et g est continue en f(A) (resp. sur f(A)), alors g ◦ f est continue
en a (resp. sur A).

2.4 Continuité par coordonnées, continuité des fonctions à valeurs dans un espace produit
Définition. Soit F est un espace vectoriel de dimension finie p, muni d’une base C = (f1, . . . , fp). Soit g : A ⊂

E → F . À x ∈ A fixé, g(x) s’écrit de façon unique sous la forme :

g(x) = g1(x)f1 + g2(x)f2 + · · ·+ gp(x)fp

où (g1(x), g2(x), . . . , gp(x)) est le p-uplet des coordonnées de g(x) dans la base C.
Pour chaque k ∈ {1, . . . , p}, la fonction numérique gk est la k-ème application coordonnée de g dans
la base C.

Théorème.

Avec les notations précédentes, g est continue en a ∈ A si et seulement si les p applications coordonnées
gk sont continues en a.

Proposition. Soit g : A ⊂ E → F où F = F1 × · · · × Fp. On peut écrire, pour tout x ∈ A :

g(x) =
(
g1(x), . . . , gp(x)

)
où les fonctions gk sont les applications composantes de g.
La fonction g est continue en a ∈ A si et seulement si les p applications composantes gk sont continues
en a.
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2.5 Continuité et densité
Théorème.

Soit f, g : A ⊂ E → F deux applications. Si :

• f et g sont continues sur A,

• ∀x ∈ D ⊂ A, f(x) = g(x),

• D est dense dans A,

alors :

◦ f = g i.e. ∀x ∈ A, f(x) = g(x).

Remarque. Ainsi, pour montrer une propriété « continue » sur un ensemble, il suffit de la montrer sur une partie dense
de cet ensemble.

2.6 Fonctions lipschitziennes, uniformément continues
Définition. La fonction f : A ⊂ E → F est lipschitzienne sur A si et seulement s’il existe k > 0 tel que :

∀x, y ∈ A, ‖f(y)− f(x)‖F 6 k‖y − x‖E

Proposition. Soit A ⊂ E, avec A 6= ∅. Alors l’application : E → R
x 7→ d(x,A)

est 1-lipschitzienne.

Définition. La fonction f : A ⊂ E → F est uniformément continue sur A si et seulement si :

∀ε > 0, ∃η > 0, ∀x, y ∈ A, ‖y − x‖E 6 η =⇒ ‖f(y)− f(x)‖F 6 ε

Proposition.

• Les applications lipschitziennes sont uniformément continues.

• Les applications uniformément continues sont continues.

3 Image réciproque d’un ouvert, d’un fermé, par une application continue
Théorème.

Soit f : A ⊂ E → F une application continue. Alors l’image réciproque par f d’un ouvert (resp. fermé)
est un ouvert (resp. fermé) relatif de A :

• Si X est ouvert, f−1(X) est un ouvert de A

• Si X est fermé, f−1(X) est un fermé de A

Proposition. Soit f et g deux fonctions continues sur A, à valeurs réelles. Alors, pour tout réel λ :

{x ∈ A, f(x) = g(x)} et {x ∈ A, f(x) = λ} sont des fermés de A

{x ∈ A, f(x) 6 g(x)} et {x ∈ A, f(x) 6 λ} sont des fermés de A

{x ∈ A, f(x) < g(x)} et {x ∈ A, f(x) < λ} sont des ouverts de A
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4 Annexes
4.1 Annexe : unification des définitions à l’aide des voisinages

Définition. Si A est une partie non majorée de R, on
appelle voisinage de +∞ dans A toute partie
V ⊂ A telle qu’il existe M ∈ R satisfaisant :

]M,+∞[ ∩A ⊂ V

Remarque. Rappelons que, pour a ∈ R, un voisinage
relatif de a dans A est toute partie V de A telle
qu’il existe η > 0 satisfaisant :

]a− η, a+ η[ ∩A ⊂ V

On note VA(a) l’ensemble des voisinages relatifs de a

dans A.

Proposition. Soit f : A ⊂ R → R. Soit a ∈ A∪{±∞}
et b ∈ R ∪ {±∞}. Alors f(x) −−−→

x→a
b si et seule-

ment si :

∀V ∈ V(b), ∃W ∈ VA(a), f(W ) ⊂ V

4.2 Annexe : limite suivant une partie

Définition. Soit f : A ⊂ E → F et a ∈ A.
On considère B une partie A, telle que a soit
adhérent à B. La limite de f en a suivant B
est, si elle existe, la limite en a de la restriction
f|B :

f(x) −−−→
x→a
x∈B

`

⇐⇒
(
∀ε > 0,∃η > 0, ∀x ∈ B,

‖x− a‖E 6 η =⇒ ‖f(x)− `‖F 6 ε
)

Exemple. Si f : A ⊂ R → F est une fonction de la
variable réelle, on appelle limite à droite en a
la limite de f en A suivant A∩ ]a,+∞[, et si ` est
cette limite, on note :

f(x) −−−→
x→

>
a

`

en évitant soigneusement toute notation avec un
symbole + en exposant, trop ambigu.
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Exercices et résultats classiques à connaître

Continuité de la distance à une partie

440.1
Soit A une partie non vide de E espace normé. Montrer que l’application :

x 7→ d(x,A)

est continue sur E.

Une équation fonctionnelle

440.2
On cherche les fonctions f : R → R continues et vérifiant :

∀x, y ∈ R, f(x+ y) = f(x) + f(y)

(a) Montrer que, pour tout x ∈ R et r ∈ Q, f(rx) = rf(x).

(b) Montrer qu’il existe α ∈ R tel que, pour tout x ∈ R, f(x) = αx.

Une application linéaire 1-lipschitzienne

440.3
Soit E un espace normé de dimension finie, u ∈ L(E) tel que :

∀x ∈ E, ‖u(x)‖ 6 ‖x‖

Montrer que Ker(u− IdE) et Im(u− IdE) sont supplémentaires.
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Exercices du CCINP

440.4 35
E et F désignent deux espaces vectoriels normés.
On note || ||E ( respectivement || ||F ) la norme sur E (respectivement sur F ).

1. Soient f une application de E dans F et a un point de E.
On considère les propositions suivantes :

P1. f est continue en a.
P2. Pour toute suite (xn)n∈N d’éléments de E telle que lim

n→+∞
xn = a,

alors lim
n→+∞

f(xn) = f(a).

Prouver que les propositions P1 et P2 sont équivalentes.

2. Soit A une partie dense dans E, et soient f et g deux applications conti-
nues de E dans F .
Démontrer que si, pour tout x ∈ A, f(x) = g(x), alors f = g.

Exercices

440.5
Justifier que :

U = {(x, y) ∈ R2, x2 − y2 + 1 < x3 − y4}

est une partie ouverte de R2.

440.6
Représenter

A = {(x, y) ∈ R2, 0 6 x 6 y et x2 + y2 6 1}

et montrer que A est un fermé de R2.

440.7
On considère :

A = {(x, y) ∈ R2, y > Arctan(x)}

Montrer que A est un fermé de R2.

440.8

On considère :
A = {(x, y) ∈ R2, y = sin(x)}

Est-ce que A est fermé ? borné ?

440.9
Montrer que :

f : (x, y) 7→ xy

x2 + y2

n’a pas de limite lorsque (x, y) → (0, 0).

440.10

Étudier la limite en (0, 0) de :

(a) f : (x, y) 7→ x2y2

x2 + y2

(b) g : (x, y) 7→ x2 − y2

x2 + y2

(c) h : (x, y) 7→ xy

x− y

Petits problèmes d’entrainement

440.11 -

(a) Soit f une fonction continue de R dans R. Montrer que le graphe de f
est un fermé de R2.

(b) Donner un exemple de fonction discontinue dont le graphe est fermé.

(c) Montrer que si f est une fonction bornée sur R et que son graphe est
fermé, alors f est continue.
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440.12 -

On munit R[X] de la norme ‖ · ‖∞ définie par :

‖P‖∞ = Sup
t∈[0,1]

|P (t)|

(a) On note Pn =
1

2n
Xn. Déterminer la limite de la suite (Pn)n.

(b) Justifier que l’application ϕ : P 7→ P (2) est linéaire, mais non continue
sur R[X].

(c) Montrer que l’ensemble F = {P ∈ R[X], P (2) = 0} est une partie dense
de R[X].

440.13

Soit E un espace normé, et f : x 7→ x

1 + ‖x‖2
.

(a) Montrer que f est continue sur E.

(b) Montrer que f(E) = BF(0, 1
2 ).

440.14

Utiliser une application continue pour montrer que Z est un fermé de R.

440.15

On définit f sur R2 par f(x, y) =
sin(xy)

x
si x 6= 0 et f(0, y) = y.

En utilisant ϕ : t 7→ sin t

t
, montrer que f est continue sur R2.

440.16

Soit a, b ∈ R+. On munit R2 de la norme ‖ · ‖1 et on note :

f : (x, y) 7→ (ax, by)

Montrer que f est lipschitzienne.

440.17

(a) Montrer que 1Q n’est continue en aucun point de R.

(b) Pour A ⊂ R, déterminer l’ensemble des points où 1A est continue.

440.18
Soit n un entier non nul, et :

A = {(x, y) ∈ Rn × Rn, (x, y) liée }

(a) On considère x = (x1, . . . , xn) et y = (y1, . . . , yn) dans Rn. Montrer
que :

(x, y) libre ⇐⇒ ∃i, j ∈ {1, . . . , n},
∣∣∣∣xi xj

yi yj

∣∣∣∣ 6= 0

(b) En déduire que A est un fermé de Rn × Rn.

440.19
Soit f : R+ → R une fonction continue et surjective. Montrer que l’ensemble
des solutions de l’équation f(x) = 0 est un fermé de cardinal infini.

440.20
Soit f : E → F une application continue entre deux espaces normés. Montrer
que, si A est dense dans E, alors f(A) est dense dans f(E).
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