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Sauf mention contraire, on travaille dans un espace vectoriel normé (E, ‖ · ‖).

1 Suites extraites, valeurs d’adhérence d’une suite
1.1 Suites extraites

Définition. Soit (un)n∈N et (vn)n∈N deux suites d’éléments d’un ensemble X. On dit que v est extraite de u
lorsqu’il existe une application ϕ : N → N strictement croissante telle que :

∀n ∈ N, vn = uϕ(n)

L’application ϕ s’appelle extractrice.
Exemple. En posant vn = u2n, on définit la suite extraite de (un)n des termes d’indices pairs. Ici, ϕ : n 7→ 2n.

Remarque. Si (uϕ(n))n est extraite de (un)n, et que ψ désigne une autre extractrice, la suite extraite de (uϕ(n))n
est-elle :

(uψ◦ϕ(n))n ou (uϕ◦ψ(n))n ?

Proposition. Si ϕ est une extractrice, c’est-à-dire une application : N → N strictement croissante, alors :

∀n ∈ N, ϕ(n) > n

1.2 Valeurs d’adhérence d’une suite
Définition. Soit (un)n∈N une suite d’éléments de E, et a ∈ E. On dit que a est une valeur d’adhérence de

(un)n si et seulement s’il existe une suite extraite (uϕ(n))n qui converge vers a.

Exemple. Les valeurs 1 et −1 sont des valeurs d’adhérence de la suite
(

cos nπ
2

)
n
.

Proposition. On conserve les notations de la définition. Alors a est valeur d’adhérence de (un)n si et seulement
si l’une des conditions suivantes est vérifiée :

(i) ∀ε > 0, {n ∈ N, un ∈ B(a, ε)} est infini ;

(ii) ∀ε > 0, {n ∈ N, un ∈ B(a, ε)} est non majoré ;

(iii) ∀ε > 0, ∀p ∈ N, {n > p, un ∈ B(a, ε)} est non vide.

Proposition. Soit (un)n∈N une suite d’éléments de E. Si (un)n est convergente, alors elle admet une unique
valeur d’adhérence, qui est sa limite.

Remarque. La réciproque est fausse en général : une suite peut n’admettre qu’une seule valeur d’adhérence et ne pas
être convergente.

2 Parties compactes d’un espace vectoriel normé

2.1 Définition
Définition. Une partie X de E est dite compacte lorsque, de toute suite d’éléments de X, on peut extraire

une suite converge dans X.
Remarque.

• Il est équivalent de dire que toute suite d’élément de X a au moins une valeur d’adhérence dans X.
• L’ensemble vide ∅ est compact.
• Cette définition est dite « de Bolzano-Weierstrass », par opposition à celle de Borel-Lebesgue qui est hors pro-

gramme.
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2.2 Propriétés
Proposition. Toute partie compacte est fermée et bornée.
Remarque. Nous verrons plus tard que, si E est de dimension finie, la réciproque est vraie. Dans le cas d’un espace de

dimension infinie, ce n’est pas le cas.

Exemple. On munit l’espace E = K[X] de la norme :

‖P‖∞ = Max
k∈N

|ak|

où les ak sont les coefficients du polynôme P . Trouver une suite d’éléments de S(0, 1) qui n’admette aucune
valeur d’adhérence. Qu’a-t-on montré ?

Proposition. Un fermé relatif A d’une partie compacte X est un compact.
Remarque.

• Comme X est compacte, c’est en particulier un fermé et donc dire que A est un fermé relatif de X revient à dire
que c’est un fermé de E.

• On a en fait l’équivalence, lorsque A ⊂ X et X compacte :

A fermée ⇐⇒ A compacte

Proposition. Une suite d’éléments de X compacte converge si et seulement si elle admet une unique valeur
d’adhérence.

2.3 Produit d’une famille finie de compacts
Proposition. Soit (E1, ‖ · ‖1), …, (Ep, ‖ · ‖p) des K-espaces vectoriels normés. On considère, pour chaque i ∈

{1, . . . , p}, un compact Xi de Ei. Alors : X = X1 × · · · ×Xp est un compact de E = E1 × · · · × Ep, muni
de la norme produit.

Remarque. Ainsi, un produit (fini) de compacts est compact.

3 Applications continues sur une partie compacte

3.1 Image d’un compact par une application continue
Théorème.

L’image d’un compact par une application continue est compacte.

Remarque. Il s’agit ici de l’image (directe) d’un compact par une application continue, qui est compacte. On sait aussi
que l’image réciproque d’un ouvert (resp. d’un fermé) par une application continue est un ouvert (resp. un fermé).

Théorèmes des bornes atteintes.

Soit E un espace vectoriel normé, et X une partie compacte de E. Soit :

f : X ⊂ E → R

Si f est continue, alors f est bornée et atteint ses bornes.

Remarque.
• f atteint un minimum et un maximum sur X.
• C’est un théorème très utilisé pour montrer l’existence d’un maximum ou d’un minimum. On peut aussi se ramener

à l’utilisation de ce théorème à l’aide d’une restriction à un compact.

Exemple. Soit f : Rn → R une fonction continue. On suppose que :

f(x) −−−−−−→
‖x‖→+∞

+∞

Montrer que f admet un minimum global sur Rn.
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3.2 Continuité uniforme
Théorème de Heine.

Une fonction continue sur un compact est uniformément continue sur ce compact.

4 Espaces vectoriels normés de dimension finie

4.1 Exemples : compacts de R ou de C

Théorème de Bolzano-Weierstrass.
De toute suite bornée de réels ou de complexes on peut extraire une suite convergente.

Remarque. Ce théorème, démontré en première année par dichotomie, peut s’exprimer maintenant en disant que toute
suite bornée de réels ou de complexes admet au moins une valeur d’adhérence.

Corollaire. Les compacts de R (resp. de C) sont les parties fermées et bornées de R (resp. de C).
Remarque.

• Les segments sont des compacts de R, ce sont les intervalles compacts. Mais il y a beaucoup de compacts qui ne
sont pas des intervalles.

• Tout compact X de R est fermé et borné, donc inclus dans [Inf(X),Sup(X)] = [Min(X),Max(X)]. C’est pour cela
que, sur R, les expressions « sur tout compact » ou « sur tout segment » ont le même sens.

4.2 Équivalence des normes en dimension finie
Théorème.

Sur un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Corollaire. Si E est de dimension finie, le caractère borné d’une partie, d’une suite ou d’une fonction ne dépend
pas du choix de la norme. De même, le caractère ouvert, fermé ou dense d’une partie de dépend pas du
choix de la norme.

Corollaire. Si E est un espace vectoriel normé de dimension finie, B = (e1, . . . , en) une base de E. Soit (xp)p
une suite de E. On note (xk

p)p les suites coordonnées, c’est-à-dire que, pour tout p ∈ N :

xp =

n∑
k=1

xk
pek

Alors :
(xp)p converge dans E ⇐⇒ ∀k ∈ {1, . . . , n}, (xk

p)p converge dans K

Dans ce cas, en notant ` la lmite de (xp)p et `k celle de (xk
p)p, on a :

` =

n∑
k=1

`kek

Corollaire. Si E est un espace vectoriel normé de dimension finie, B = (e1, . . . , en) une base de E. Soit
f : X → E une application à valeurs dans E. On note f1, . . . , fn les applications coordonnées, c’est-à-dire
que, pour tout x ∈ X :

f(x) =

n∑
k=1

fk(x)ek

Alors :
f a une limite en x0 ⇐⇒ ∀k ∈ {1, . . . , n}, fk a une limite en x0

Dans ce cas, en notant ` la lmite de f en x0 et `k celle de fk, on a :

` =

n∑
k=1

`kek
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4.3 Compacts d’un espace de dimension finie
Théorème.

Dans un espace vectoriel normé de dimension finie, les parties compactes sont les parties fermées et
bornées.

Remarque. Ainsi, dans un espace vectoriel normé de dimension finie, toute suite bornée admet au moins une valeur
d’adhérence, ou encore de toute suite bornée on peut extraire une suite convergente.

Corollaire. Dans un espace vectoriel normé de dimension finie, une suite (un)n converge si et seulement si elle
admet une unique valeur d’adhérence.

Corollaire. Si F est un sous-espace vectoriel de dimension finie de (E, ‖ · ‖), alors F est fermé.
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5 Annexes
5.1 Annexe : démonstration du théorème de Heine

Théorème de Heine.

Une fonction continue sur un compact est uni-
formément continue sur ce compact.

Preuve. On considère f : X ⊂ E → F une application conti-
nue sur X compact de E. Raisonnons par l’absurde, en suppo-
sant que f ne soit pas uniformément continue :

∃ε > 0, ∀α > 0, ∃x, y ∈ X t.q.
‖x− y‖E 6 α et ‖f(x)− f(y)‖F > ε

On applique cette propriété avec α =
1

n
, ce qui fournit deux

suites (xn)n et (yn)n d’éléments de X telles que :

∀n, ‖xn − yn‖E 6
1

n
et ‖f(xn)− f(yn)‖F > ε

(xn, yn)n est une suite du compact X2, donc on peut en ex-
traire une suite (xϕ(n), yϕ(n))n qui convergent vers un élé-

ment (a, b) ∈ X2.
D’une part, pour tout n :

0 6 ‖xϕ(n) − yϕ(n)‖E 6
1

ϕ(n)
6

1

n

et donc, à la limite :

0 6 ‖a− b‖E 6 0

et donc a = b.
D’autre part, pour tout n :

‖f(xϕ(n))− f(yϕ(n))‖F > ε

et donc, à la limite, en exploitant la continuité de f et de la
norme :

‖f(a)− f(b)‖F > ε > 0

et donc f(a) 6= f(b), ce qui contredit a = b.
On a montré que f est uniformément continue.

5.2 Complément : équivalence des normes en dimension finie

Théorème.
Sur un espace vectoriel de dimension finie,
toutes les normes sont équivalentes.

Preuve (non exigible). Soit E un espace vectoriel de dimen-
sion finie, muni d’une base B = (e1, . . . , en). Pour x de coor-
données (x1, . . . , xn), on pose :

‖x‖E∞ =
n

Max
i=1

|xi|

qui est une norme. On considère une seconde norme, notée N ,
sur E, et on souhaite montrer que N et ‖·‖E∞ sont équivalentes.

• Pour x ∈ E de coordonnées (x1, . . . , xn), on a :

N(x) = N

(
n∑
i=1

xiei

)

6
n∑
i=1

|xi|N(ei)

par inégalité triangulaire et homogénéité

6 ‖x‖E∞
n∑
i=1

N(ei)︸ ︷︷ ︸
noté β

= β‖x‖E∞
où β > 0 car les ei ne sont pas nuls.

• On cherche maintenant α > 0 tel que, pour tout x ∈ E :
α‖x‖E∞ 6 N(x)

ce qui revient à minorer
N(x)

‖x‖E∞
= N

(
x

‖x‖E∞

)
sur E r {0}, c’est-à-dire minorer :

N(y)

quand y parcourt SE(0, 1), sphère unité de E pour la
norme ‖ · ‖E∞.

• Plutôt que d’étudier directement N(y), envisageons l’ap-
plication :

φ : (Kn, ‖ · ‖∞) → (E, ‖ · ‖E∞) → (R, | · |)

(y1, . . . , yn) 7→ y =

n∑
i=1

yiei 7→ N(y)

On a :

|φ(y1, . . . , yn)− φ(x1, . . . , xn)|
= |N(y)−N(x)|
6 N(y − x) par l’inégalité triangulaire

= N

(
n∑
i=1

(yi − xi)ei

)

6
n∑
i=1

|yi − xi|N(ei) par l’inégalité triangulaire

6 ‖(y1, . . . , yn)− (x1, . . . , xn)‖∞
n∑
i=1

N(ei)︸ ︷︷ ︸
noté K

= K‖(y1, . . . , yn)− (x1, . . . , xn)‖∞

donc φ est K-lipschitzienne, donc continue.
• La sphère unité de (Kn, ‖ · ‖∞) est compacte. En effet,

si K = R, c’est un fermé comme image réciproque du
fermé {1} par l’application continue ‖ · ‖∞, et il est in-
clus dans BF (0, 1) = [−1, 1]n, qui est compact comme
produit de compacts ; et si K = C, c’est analogue avec la
boule fermée unité qui un produit de disques fermés.

• Ainsi, sur le compact S(0, 1), l’application continue φ ad-
met un minimum noté α : il existe (x1, . . . , xn) ∈ S(0, 1)
tel que :

α = φ(x1, . . . , xn)

= N(x)

> 0 car x 6= 0

• Comme ‖y‖E∞ = 1 ⇐⇒ ‖(y1, . . . , yn)‖∞ = 1, on a
montré que :

∀y ∈ SE(0, 1), N(y) > α

et donc, pour tout x ∈ E :

N(x) > α‖x‖E∞

On peut remarquer que l’existence de β établie au premier point
peut aussi être justifiée par l’existence d’un maximum de φ sur
S(0, 1).
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5.3 Compacts d’un espace de dimension finie

Lemme. Les compacts de (Kn, ‖·‖∞) sont les parties
fermées et bornées.

Preuve. On sait déjà que tout compact est fermé et borné.
Considèrons A une partie fermée et bornée de Kn, pour la
norme ‖ · ‖∞.
Comme A est bornée pour ‖ · ‖∞, il existe M > 0 tel que :

A ⊂ [−M,M ]n(resp. A ⊂ D(0,M)n)

si K = R (resp. K = C).
Or [−M,M ]n (resp. D(0,M)n) est compact en tant que pro-
duit de compacts. Donc A est compact, comme fermé dans un
compact.

Théorème.
Dans un espace vectoriel normé de dimension
finie, les parties compactes sont les parties fer-
mées et bornées.

Preuve. Soit E un espace vectoriel de dimension finie, B =
(e1, . . . , en) une base de E. On munit E de la norme ‖ · ‖E∞ :

‖x‖E∞ =
n

Max
i=1

|xi|

lorsque (x1, . . . , xn) est le n-uplet des coordonnées de x dans B,
et on munit Kn de la norme ‖ · ‖∞ :

‖(x1, . . . , xn)‖∞ =
n

Max
i=1

|xi|

Alors ϕ : Kn → E

(x1, . . . , xn) 7→
n∑
i=1

xiei

définit un isomorphisme

qui préserve la norme. Alors A ⊂ E est bornée (resp. fermée,
resp. compacte) si et seulement si f−1(A) ⊂ Kn est bornée (re-
sp. fermée, resp. compacte).
L’équivalence établie dans le lemme se transfert donc à E.

Exercices et résultats classiques à connaître

Compacité du groupe orthogonal

460.1

On note O(n) = {M ∈ Mn(R), M>M = In}.
Montrer que O(n) est compact.

Existence d’un minimum pour une fonction coercive

460.2
Soit f : Rn → R une fonction continue. On suppose que f(x) −−−−−−→

‖x‖→+∞
+∞. Montrer que f admet un minimum

global sur Rn.

Les valeurs d’adhérences d’une suite

460.3
Montrer que l’ensemble des valeurs d’adhérence d’une suite est un fermé.
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Exercices du CCINP

460.4 13

1. Rappeler, oralement, la définition, par les suites de vecteurs, d’une par-
tie compacte d’un espace vectoriel normé.

2. Démontrer qu’une partie compacte d’un espace vectoriel normé est une
partie fermée de cet espace.

3. Démontrer qu’une partie compacte d’un espace vectoriel normé est une
partie bornée de cet espace.
Indication : On pourra raisonner par l’absurde.

4. On se place sur E = R[X] muni de la norme || ||1 définie pour tout

polynôme P = a0 + a1X + ....+ anX
n de E par : ||P ||1 =

n∑
i=0

|ai|.

(a) Justifier que S(0, 1) = {P ∈ R[X] / ||P ||1 = 1} est une partie fer-
mée et bornée de E.

(b) Calculer ||Xn −Xm||1 pour m et n entiers naturels distincts.
S(0, 1) est-elle une partie compacte de E ? Justifier.

Exercices

460.5
Soit E un espace normé de dimension finie. Montrer que la sphère unité :

S = {x ∈ E, ‖x‖ = 1}

est une partie compacte.

460.6
Soit E un espace normé de dimension finie n > 2. Montrer que l’ensemble des
projecteurs de E est un fermé de L(E), et qu’il n’est pas compact.

460.7
Soit A ∈ Mn(R). Montrer que :

{AP, P ∈ On(R)} et {P−1AP, P ∈ On(R)}

sont des compacts.

460.8
Soit E et F deux espaces normés, A ⊂ E et B ⊂ F . Montrer que A × B est
une partie compacte de E × F si et seulement si A et B sont compactes.

Petits problèmes d’entrainement

460.9 -

Soit (un)n une suite convergente dans un espace vectoriel normé de dimension
finie, et ` sa limite. Montrer que {un, n ∈ N} ∪ {`} est compact.

460.10 -
Soit E un espace euclidien, et C ⊂ E un convexe fermé.

(a) Pour a, b, x ∈ E tels que a 6= b et ‖x− a‖ = ‖x− b‖, montrer que :∥∥∥∥x− a+ b

2

∥∥∥∥ < ‖x− a‖

(b) Montrer que, pour tout x, il existe un unique a ∈ C tel que :

‖x− a‖ = d(x,C)

On définit ainsi une application : P : x 7→ a appelée projection sur le
convexe C.

(c) Soit x ∈ E et a ∈ C tels que :

∀y ∈ C, 〈x− a, y − a〉 6 0

Montrer que a = P (x).

(d) Inversement, on suppose qu’il existe y ∈ C tel que :

〈x− P (x), y − P (x)〉 > 0

En considère les vecteurs de la forme ty + (1 − t)P (x) où t ∈ [0, 1],
obtenir une contradiction.
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On a donc montré que P (x) est l’unique vecteur a ∈ C tel que :

∀y ∈ C, 〈x− a, y − a〉 6 0

(e) Établir que, pour tout x, y ∈ E :

〈x− y, P (x)− P (y)〉 > ‖P (x)− P (y)‖2

et en déduire que P est continue.

460.11
Soit E un espace normé de dimension quelconque. Soit F une partie fermée
de E, et K une partie compacte. Que peut-on dire de l’ensemble :

F +K = {x+ y, x ∈ F, y ∈ K}

460.12
Soit E un espace normé de dimension quelconque. Soit A et B deux parties
compactes de E. Que peut-on dire de l’ensemble :

A+B = {x+ y, x ∈ A, y ∈ B}

460.13
Soit E un espace normé de dimension finie et r > 0. On considère K une
partie compacte de E. Montrer que

Kr =
⋃
x∈K

BF (x, r)

est compacte.

460.14

On considère E = C0([0, 1],R) muni de la norme ‖ · ‖∞. Pour n ∈ N, on note
Fn le sous-espace de E formé des fonctions polynomiales de degré 6 n.
Pour f ∈ E et n ∈ N, montrer qu’il existe une fonction polynomiale φn telle
que :

‖f − φn‖∞ = Inf
(
{‖f − φ‖, φ ∈ Fn}

)

460.15
Soit A une partie fermée et non vide d’un espace normé E de dimension finie.
Montrer qu’il existe a ∈ A tel que :

d(x,A) = ‖x− a‖

460.16
Soit E et F deux espaces vectoriels normés, et f : E → F une application
continue. On suppose E de dimension finie, et :

f(x) −−−−−−→
‖x‖→+∞

0F

Montrer que f est uniformément continue sur E.

460.17

(a) Soit (un)n une suite de réels telle que :

un+1 − un −−−−−→
n→+∞

0

Montrer que l’ensemble des valeurs d’adhérence de la suite (un)n est un
intervalle.

(b) Quel est l’ensemble des valeurs d’adhérence de la suite
(

sin
(π
2

√
n
))

n
?

460.18

Soit E = R[X] muni des deux normes définies par :

‖P‖∞ = Sup
t∈[0,1]

|P (t)| et ‖P‖1 =

ˆ 1

0

|P (t)|dt

(a) Vérifier que la suite (Xn)n est bornée pour la norme ‖ · ‖∞, et qu’elle
converge vers 0 pour la norme ‖ · ‖1.

(b) Est-ce que (Xn)n admet une valeur d’adhérence pour la norme ‖ · ‖∞ ?
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460.19
Soit K une partie compacte non vide d’un espace normé E. On considère
f : K → K telle que :

∀x, y ∈ K, x 6= y =⇒ ‖f(x)− f(y)‖ < ‖x− y‖

(a) Montrer que f possède un unique point fixe c.

(b) Soit (xn)n la suite définie par récurrence par :

x0 ∈ K et xn+1 = f(xn) ∀n

Montrer que (xn)n converge vers c.

460.20
Soit K une partie compacte non vide d’un espace normé E. On considère
f : E → E telle que :

∀x, y ∈ E, x 6= y =⇒ ‖f(x)− f(y)‖ = ‖x− y‖

et telle que :
f(K) ⊂ K

(a) Soit a ∈ K fixé, et (xn)n la suite définie par récurrence par :

x0 = a et xn+1 = f(xn) ∀n

Montrer que a est valeur d’adhérence de (xn)n.

(b) En déduire que f(K) = K.

460.21
Soit E un espace normé de dimension finie, et (Un)n∈N une suite d’ouverts
denses dans E. Montrer que

⋂
n∈N

Un est dense dans E.

460.22
Soit K une partie compacte d’un espace normé E, et A une partie fermée
d’un espace normé F . On définit :

C = {f ∈ C0(K,F ), f(K) ∩A 6= ∅}

Montrer que C est une partie fermée de
(
C0(K,F ), ‖ · ‖∞

)
.

460.23

Soit K une partie compacte d’un espace normé E, et (Ωn)n∈N une suite de
parties ouvertes. On suppose que :

K ⊂
⋃
n∈N

Ωn

Montrer qu’il existe n ∈ N tel que :

K ⊂
n⋃

k=0

Ωk

460.24

Soit F un sous-espace vectoriel de dimension finie d’un espace normé E.

(a) Montrer que :

∀a ∈ E, ∃x ∈ F t.q. d(a, F ) = ‖a− x‖

(b) On suppose F 6= E. Montrer qu’il existe a ∈ E tel que :

d(a, F ) = 1 et ‖a‖ = 1

On suppose maintenant E de dimension infinie.

(c) Montrer qu’il existe une suite (an)n d’éléments de E telle que :

∀n ∈ N, ‖an‖ = 1 et d
(
an+1,Vect(a0, . . . , an)

)
= 1

(d) Conclure que la boule unité de E n’est pas compacte.
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