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Tous les espaces vectoriels normés envisagés dans ce chapitre sont de dimension finie.
On s’intéresse dans ce chapitre à des fonctions :

f : I → F
t 7→ f(t)

où I est un intervalle de R et F un espace normé de dimension finie sur K = R ou C.
Remarque. Pour les fonctions à valeurs vectorielles, il n’y a pas de théorème de Rolle, pas de quotient etc.

Remarque. Dans le cadre de notre programme, on ne dérive que les fonctions de variable réelle, et pas les fonctions de
variable complexe.

1 Dérivation des fonctions à valeurs vectorielles
1.1 Dérivabilité et dérivée des fonctions à valeurs vectorielles

Définition. Soit a ∈ I. On dit que f est dérivable en a lorsque la fonction :

t 7→ 1

h

(
f(a+ h)− f(a)

)
admet une limite en 0. On note alors f ′(a) cette limite.

Remarque. f ′(a) est un élément de F , un vecteur.

Proposition. f est dérivable en a si et seulement s’il existe ` ∈ F tel que, au voisinage de h → 0 :

f(a+ h) = f(a) + h`+ o(h)

Remarque. On a aussi :

f ′(a) = ` ⇐⇒ 1

t− a

(
f(t)− f(a)

)
−−−→
t→a

`

⇐⇒ f(t) = f(a) + (t− a)`+ o
t→a

(
t− a

)

Définition. f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, on définit la fonction
dérivée :

f ′ : I → F
t 7→ f ′(t)

On dit que f est C1 lorsque f est dérivable, et que f ′ est continue.

Remarque. On peut définir, lorsqu’elles existent, les dérivées à gauche et à droite en a.

1.2 Interprétation cinématique
En cinématique, on étudie le mouvement d’un point mobile :

t 7→ M(t)

où la variable t désigne le temps. Fixant une origine à l’espace affine, cela revient à étudier la fonction à valeurs
vectorielles :

f : t 7→
−−−−→
OM(t)

On écrit alors, en général, M ′(t) pour f ′(t) ou encore d
−−−−→
OM(t)

dt , quantité qui ne dépend pas du choix de l’origine
de l’espace affine, et qui représente le vecteur vitesse à l’instant t.
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1.3 Opérations sur les dérivées

1.3.1 Combinaison linéaire

Proposition. Soit f, g deux fonctions I ⊂ R → F , λ, µ ∈ K. Si f et g sont dérivables en a ∈ E, alors λf + µg
est dérivable en a et :

(λf + µg)′(a) = λf ′(a) + µg′(a)

Proposition. Soit f, g deux fonctions I ⊂ R → F , λ, µ ∈ K. Si f et g sont C1 sur I, alors λf + µg est C1 sur I.

1.3.2 Image par une application linéaire

Proposition. Soit G un espace normé de dimension finie, u ∈ L(F,G), et f : I ⊂ R → F une fonction dérivable
en a ∈ I.
Alors u ◦ f : t 7→ u(f(t)) est dérivable en a et :

(u ◦ f)′(a) = u
(
f ′(a)

)

Remarque. Ici, f n’est pas une fonction de la variable réelle, donc on n’applique pas la formule usuelle. Ça n’a pas de
sens de parler de la « dérivée de u ».

Proposition. Avec les notations précédentes, si f est de classe C1 sur I, alors u ◦ f l’est aussi.

Exemple. Soit A : I ⊂ R → Mn(K)
t 7→ A(t)

une application dérivable sur I. Montrer que t 7→ tr
(
A(t)

)
est

dérivable sur I, et exprimer sa dérivée à l’aide de A′.
Exemple. Soit x : I ⊂ R → E

t 7→ x(t)
une application dérivable sur I. Pour a ∈ E, montrer que l’application

t 7→ 〈a, x(t)〉 est dérivable sur I est exprimer sa dérivée à l’aide de x′.

1.3.3 Bilinéarité, dérivée d’un produit

Proposition. Soit E,F,G trois espace normés de dimensions finies, I un intervalle de R. Si B : E × F → G
est bilinéaire, f : I → E et g : I → F sont dérivables en a, alors :

B(f, g) : I → G
t 7→ B

(
f(t), g(t)

)
est dérivable en a et : (

B(f, g)
)′
(a) = B

(
f ′(a), g(a)

)
+B

(
f(a), g′(a)

)
Proposition. Avec les mêmes notations, si f et g sont C1 sur I, alors B(f, g) l’est aussi.

Exemple. Soit t 7→ A(t) et t 7→ B(t) deux applications C1 sur I intervalle, à valeurs dans Mpq(K) et Mqr(K)
respectivement. Montrer que t 7→ A(t)B(t) est C1 sur I, et donner l’expression de sa dérivée.

Exemple. Soit t 7→ A(t) une application C1 sur I intervalle, à valeurs dans Mn(K). Montrer que t 7→
(
A(t)

)2
est C1 sur I, et donner l’expression de sa dérivée.

Exemple. Soit F un espace euclidien, t 7→ f(t) et t 7→ g(t) deux applications C1 sur I intervalle, à valeurs
dans F . Montrer que t 7→ 〈f(t), g(t)〉 et t 7→ ‖f(t)‖2 sont C1 sur I, et donner l’expression de leurs dérivées.

1.3.4 Multilinéarité
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Proposition. Soit F1, F2, . . . , Fp, G des espace normés de dimensions finies, I un intervalle de R. Si M :
F1 × F2 × · · · × Fp → G est mutlilinéaire et que les fi : I → Fi sont dérivables en a, alors :

M(f1, f2, . . . , fp) : I → G
t 7→ M

(
f1(t), f2(t), . . . , fp(t)

)
est dérivable en a et :(

M(f1, f2, . . . , fp)
)′
(a) = M

(
f ′
1(a), f2(a), . . . , fp(a)

)
+M

(
f1(a), f

′
2(a), . . . , fp(a)

)
+ . . .

+M
(
f1(a), f2(a), . . . , f

′
p(a)

)

1.3.5 Dérivation d’une fonction composée

Proposition. Soit I, J deux intervalles de R, ϕ : I → R et g : J → F . On suppose :

• ϕ(I) ⊂ J

• ϕ dérivable en a

• g dérivable en ϕ(a)

Alors g ◦ ϕ est dérivable en a et :
(g ◦ ϕ)′(a) = ϕ′(a) g′

(
ϕ(a)

)
Proposition. Avec les notations précédentes, si g est C1 sur J et ϕ est C1 sur I, alors g ◦ ϕ est C1 sur I.

1.3.6 Caractérisation par les fontions coordonnées

Proposition. Soit B = (e1, . . . , en) une base de F , et fi les applications coordonnées de f : I → F dans la
base B. Alors f est dérivable en a si et seulement si chaque fi l’est. Dans ce cas :

f ′(a) =

n∑
i=1

f ′
i(a)ei

Proposition. Avec les notations précédentes, f est C1 si et seulement si chaque fi l’est.

Exemple. Justifier que t 7→
(

cos t − sin t
sin t cos t

)
est de classe C1 sur R, et calculer sa dérivée.

1.3.7 Caractérisation des fonctions constantes

Théorème.

Soit f : I → F une fonction continue sur I, dérivable sur l’intérieur I̊ de I. Alors f est constante si et
seulement si sa dérivée est nulle sur I̊.

1.4 Fonctions de classe Ck

Définition. On a déjà défini le fait que f soit de classe C1 : elle est dérivable et sa dérivée est continue. On
définit la classe Ck par récurrence : f est Ck+1 si f (k) est de classe C1.
On note f (k) ou dkf

dxk .
On dit que f est de classe C∞ lorsqu’elle est Ck pour tout k.
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Proposition. Si f, g sont de classe Ck sur I à valeurs dans F , λ, µ ∈ K, alors λf + µg est de classe Ck et :

(λf + µg)(k) = λf (k) + µg(k)

Ck(I, F ) est un espace vectoriel.
Proposition. Si f, g sont de classe Ck sur I à valeurs dans F et G respectivement, B : E×F → G est bilinéaire,

alors B(f, g) est de classe Ck et :

(
B(f, g)

)(k)
=

k∑
i=0

(
k

i

)
B
(
f (i), g(k−i)

)
Proposition. Si f est de classe Ck sur I à valeurs dans F , ϕ est de classe Ck sur J intervalle de R et ϕ(J) ⊂ I,

alors f ◦ ϕ est de classe Ck sur J et :

∀t ∈ J, (f ◦ ϕ)′(t) = ϕ′(t) f ′(ϕ(t))
Proposition. Soit B = (e1, . . . , en) une base de F , et fi les applications coordonnées de f : I → F dans la

base B. Alors f est Ck sur I si et seulement si chaque fi l’est. Dans ce cas :

∀t ∈ I, f (k)(t) =

n∑
i=1

f
(k)
i (t)ei

1.5 Limite de la dérivée, classe Ck par prolongement
Théorème.

Soit f : I → F et a ∈ I. Si

• f est continue sur I (en particulier en a)

• f est dérivable sur I r {a}

• f ′(t) −−−→
t→a

`

alors f est dérivable en a, et f ′(a) = ` (et donc f ′ est continue en a).

Théorème.
Soit f : I r {a} → F . Si

• f est Ck sur I r {a}

• f , f ′, …, f (k) admettent en a une limite `, `1, …, `k respectivement.

alors f se prolonge en a de faicon Ck en posant f(a) = `, alors f (i)(a) = `i pour tout i.

2 Intégration des fonctions à valeurs vectorielles

2.1 Intégrale d’une fonction en escalier sur un segment
Définition. Soit f : I = [a, b] → F . On dit que f est en escalier lorsqu’il existe une subdivdision (a0, . . . , an)

de [a, b] telle que sur chaque intervalle ]ai, ai+1[, f est constante, et on note vi cette constante.
Avec les notations précédente, pour f en escalier, on définit l’intégrale de f sur [a, b] par :

ˆ b

a

f(t)dt =
i−1∑
i=0

(ai+1 − ai)vi

qui ne dépend pas du choix de la subdivision adaptée à f .
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2.2 Intégrale d’une fonction continue par morceaux sur un segment
Rappel. Toute fonction continue par morceaux sur un segment, à valeurs dans un espace normé de dimension

finie, est limite uniforme sur ce segment d’une suite de fonctions en escalier.

Preuve. Dans une base donnée, on approche chaque fonction coordonnée.

Définition. Soit f : [a, b] → F une fonction continue par morceaux, et (gn)n∈N une suite de fonctions en escalier

qui converge uniformément vers f sur [a, b]. Alors
( ˆ b

a

gn(t)dt
)
n∈N

converge, et sa limite est indépendante

du choix de la suite (gn)n. On appelle intégrale de f sur [a, b] cette limite commune.
Proposition. Relation de Chasles.
Proposition. Si f et g sont continues par morceaux sur [a, b], λ, µ ∈ K, alors λf +µg est continue par morceaux

sur [a, b] et : ˆ b

a

(λf + µg)(t)dt = λ

ˆ b

a

f(t)dt+ µ

ˆ b

a

g(t)dt

Proposition. Soit f continue par morceaux sur [a, b], à valeurs dans F , et u ∈ L(F,G). Alors u ◦ f est continue
par morceaux sur [a, b] et : ˆ b

a

u ◦ f(t)dt = u
( ˆ b

a

f(t)dt
)

Proposition. Soit f continue par morceaux sur [a, b], à valeurs dans F . Soit B = (e1, . . . , en) une base de F et
fi les applications coordonnées de f . Alors :

ˆ b

a

f(t)dt =
n∑

i=1

( ˆ
I

fi(t)dt
)
ei

C’est-à-dire que les coordonnées de l’intégrale sont les intégrales des fonctions coordonnées.

Exemple. Calculer
ˆ π

2

0

A(t)dt où A(t) =

(
cos t − sin t
sin t cos t

)
Proposition. Soit f : [a, b] → F continue par morceaux et ‖ · ‖ une norme sur F . Lorsque a 6 b :∥∥∥∥∥

ˆ b

a

f(t)dt

∥∥∥∥∥ 6
ˆ b

a

‖f(t)‖dt

Proposition. Soit f continue par morceaux sur [a, b], à valeurs dans F . Soit (fn)n une suite de fonctions
continues par morceaux, qui converge uniformément sur [a, b] vers une fonction f continue par morceaux.
Alors : ˆ b

a

fn(t)dt −−−−−→
n→+∞

ˆ b

a

f(t)dt

2.3 Sommes de Riemann
Proposition. Soit f continue par morceaux sur [0, 1]. Alors :

1

n

n−1∑
k=0

f
(k
n

)
−−−−−→
n→+∞

ˆ b

a

f(t)dt

Proposition. Soit f continue par morceaux sur [a, b]. Alors :

b− a

n

n−1∑
k=0

f
(
a+ k

b− a

n

)
−−−−−→
n→+∞

ˆ b

a

f(t)dt
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2.4 Primitives
Définition. On appelle primitive de f : I → F toute fonction F : I → F dérivable telle que F ′ = f .
Théorème.

Soit f : I → F et a ∈ I. Si f est continue sur I, alors f possède une unique primitive qui s’annule en a,
et c’est :

F : x 7→
ˆ x

a

f(t)dt

2.5 Accroissements finis, formules de Taylor
Inégalité des accroissaments finis.

Soit f : I → F une fonction C1 sur I et M > 0 tel que :

∀t ∈ ]a, b[, ‖f ′(t)‖ 6 M

Alors :
‖f(b)− f(a)‖ 6 M‖b− a‖

Formule de Taylor avec reste intégral.

Soit f : I → F une fonction de classe Cn+1, alors pour tout a, x ∈ I :

f(x) =

n∑
k=0

(x− a)k

k!
f (k)(a) +

ˆ x

a

(x− t)n

n!
f (n+1)(t)dt

ou encore, pour tout a ∈ I et h tel que a+ h ∈ I :

f(a+ h) =

n∑
k=0

hk

k!
f (k)(a) +

ˆ a+h

a

(h− t)n

n!
f (n+1)(a+ t)dt

Inégalité de Taylor-Lagrange.

Soit f : I → F une fonction de classe Cn+1, telle que f (n+1) bornée sur I. Alors pour tout a, x ∈ I :∥∥∥∥∥f(x)−
n∑

k=0

(x− a)k

k!
f (k)(a)

∥∥∥∥∥ 6
(x− a)n+1

(n+ 1)!
‖f (n+1)‖I∞

ou encore, pour tout a ∈ I et h tel que a+ h ∈ I :∥∥∥∥∥f(a+ h)−
n∑

k=0

hk

k!
f (k)(a)

∥∥∥∥∥ 6
hn+1

(n+ 1)!
‖f (n+1)‖I∞

Formule de Taylor-Young.

Soit f : I → F une fonction de classe Cn, alors pour tout a ∈ I, au voisinage de h → 0 :

f(a+ h) =

n∑
k=0

hk

k!
f (k)(a) + hnε(h)

où ε(h) −−−→
h→0

0E .
On note o(hn) pour désigner la fonction vectorielle h 7→ hnε(h).
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Exercices

470.1

Soit E plan euclidien de dimension 2, et f : t 7→ f(t) une fonction de classe C1

sur R. On suppose que t 7→ ‖f(t)‖ est constante. Montrer que, pour tout t :

f(t) ⊥ f ′(t)

470.2

On considère :
f : ]−1, 1[ → R2

t 7→
( 1√

1− t2
, 2t
)

et :
u : R2 → R
(x, y) 7→ x+ y

Calculer u

(ˆ 1
2

0

f(t)dt

)
.

470.3

Soit E un espace vectoriel normé de dimension finie, F un sous-espace vecto-
riel de E et f : [a, b] → E une fonction continue par morceaux. On suppose

que, pour tout t ∈ [a, b], f(t) ∈ F . Montrer que
ˆ b

a

f(t)dt ∈ F .

Petits problèmes d’entrainement

470.4 -

Soit E un espace euclidien, et f : [a, b] → E une application continue. On
suppose que : ˆ b

a

‖f(t)‖dt =

∥∥∥∥∥
ˆ b

a

f(t)dt

∥∥∥∥∥

On note u le vecteur unitaire de E défini par :

u =
1´ b

a
‖f(t)‖dt

ˆ b

a

f(t)dt

Pour tout t ∈ [a, b], on décompose f(t) selon Vect(u) ©⊥ Vect(u)⊥ sous la
forme :

f(t) = α(t)u+ v(t)

(a) Montrer que α et v sont continues sur [a, b].

(b) Démontrer que
ˆ b

a

v(t)dt est orthgonal à u.

(c) Démontrer que
ˆ b

a

α(t)dt =
ˆ b

a

‖f(t)‖dt.

(d) Démontrer que, pour tout t ∈ [a, b], α(t) 6 ‖f(t)‖.

(e) En déduire que, pour tout t ∈ [a, b], f(t) = ‖f(t)‖u.

(f) Le résultat est-il encore vrai si l’on ne suppose pas E euclidien ?

470.5

Soit M : R → M2n+1(R) une application de classe C1 telle que :

∀x ∈ R, M(x)
>
M(x) = In

Montrer que M ′(x) n’est inversible pour aucune valeur x ∈ R.

470.6

Soit P1, . . . , Pn ∈ Rn−1[X]. On définit, pour x ∈ R :

D(x) = det
(
P

(i−1)
j

)
i,j

Montrer que D est constante sur R.
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470.7
Pour n ∈ N∗ et x réel, on définit :

Dn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 . . . 0

x2/2! x 1
. . .

...

x3/3! x2/2! x
. . .

...
... 0
... 1

xn/n! . . . . . . x2/2! x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(a) Montrer que Dn est dérivable, et exprimer pour n > 2D′

n(x) en fonction
de Dn−1(x).

(b) En déduire l’expression de Dn(x).

470.8
Pour a1, . . . , an, x ∈ R, calculer :∣∣∣∣∣∣∣∣∣∣

a1 + x x . . . x

x a2 + x
. . .

...
...

. . . . . . x
x . . . x an + x

∣∣∣∣∣∣∣∣∣∣

470.9
Soit f : [0, 1] → E telle que f(0) = 0 et dérivable en 0 à droite. Déterminer
la limite, pour n → +∞, de :

Sn =

n∑
k=1

f

(
k

n2

)

470.10

Soit f : [a, b] → F de classe C1 telle que f(a) = 0. Montrer que :∥∥∥∥∥
ˆ b

a

f(t)dt

∥∥∥∥∥ 6
(b− a)2

2
Sup
t∈[a,b]

‖f ′(t)‖

2
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