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Tous les espaces vectoriels normés envisagés dans ce chapitre sont de dimension finie.
On s’intéresse dans ce chapitre a des fonctions :

f:1 —» F
t o= f(t)
ou I est un intervalle de R et F' un espace normé de dimension finie sur K =R ou C.
Remarque. Pour les fonctions a valeurs vectorielles, il n’y a pas de théoréme de Rolle, pas de quotient etc.

Remarque. Dans le cadre de notre programme, on ne dérive que les fonctions de variable réelle, et pas les fonctions de
variable complexe.

'Dérivation des fonctions a valeurs vectorielles

Dérivabilité et dérivée des fonctions a valeurs vectorielles

Définition. Soit a € I. On dit que f est dérivable en a lorsque la fonction :
1
t— E(f(cH—h) — f(a))

admet une limite en 0. On note alors f'(a) cette limite.
Remarque. f/(a) est un élément de F, un vecteur.

Proposition. f est dérivable en a si et seulement s’il existe ¢ € F' tel que, au voisinage de h — 0 :

Fla+h) = f(a) + he+ o(h)

Remarque. On a aussi :

fla) =t = (f) ~ (@) —> ¢

= f(t)=fla)+ (t— a)[—i—tga(t —a)

Définition. f est dérivable sur [ si elle est dérivable en tout point de I. Dans ce cas, on définit la fonction
dérivée :
ff:1 - F
toe P
On dit que f est C! lorsque f est dérivable, et que f’ est continue.

Remarque. On peut définir, lorsqu’elles existent, les dérivées a gauche et a droite en a.

Interprétation cinématique

En cinématique, on étudie le mouvement d’un point mobile :
t— M(t)

ou la variable ¢ désigne le temps. Fixant une origine a ’espace affine, cela revient a étudier la fonction a valeurs

vectorielles :
fit—OM(t
dOM (1)

On écrit alors, en général, M'(t) pour f’(t) ou encore =5, quantité qui ne dépend pas du choix de I'origine
de l'espace affine, et qui représente le vecteur vitesse a l'instant .
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Opérations sur les dérivées

Combinaison linéaire

Proposition. Soit f, g deux fonctions I C R — F, A\, € K. Si f et g sont dérivables en a € E, alors Af + ug
est dérivable en a et :

(Af + ng)'(a) = Af'(a) + pg'(a)

Proposition. Soit f, g deux fonctions I C R — F, A\, € K. Si f et g sont C! sur I, alors Af + g est C* sur I.

Image par une application linéaire

Proposition. Soit G un espace normé de dimension finie, u € L(F,G), et f : I C R — F une fonction dérivable
enacl.
Alors wo f : t+— u(f(t)) est dérivable en a et :

(wo f)'(a) = u(f'(a))

Remarque. Ici, f n’est pas une fonction de la variable réelle, donc on n’applique pas la formule usuelle. Ga n’a pas de
sens de parler de la « dérivée de u ».

Proposition. Avec les notations précédentes, si f est de classe C' sur I, alors u o f l'est aussi.

Exemple. Soit A:I1CR — M,(K) une application dérivable sur I. Montrer que t > tr (A(t)) est
t — At)
dérivable sur I, et exprimer sa dérivée a I'aide de A’.
Exemple. Soit z: ICR — F une application dérivable sur I. Pour a € E, montrer que ’application
t = xz(t)
t + (a,z(t)) est dérivable sur I est exprimer sa dérivée & 'aide de z’.

Bilinéarité, dérivée d’un produit

Proposition. Soit E, F, G trois espace normés de dimensions finies, I un intervalle de R. Si B : ExX F — G
est bilinéaire, f : I — E et g : I — F sont dérivables en a, alors :

B(f,g) : I —
t = B(f(t),9(t))

est dérivable en a et :

(B(f,9)) (a) = B(f'(a),9(a)) + B(f(a),g'(a))

Proposition. Avec les mémes notations, si f et g sont C! sur I, alors B(f, g) I'est aussi.

Exemple. Soit ¢ — A(t) et t — B(t) deux applications C! sur I intervalle, & valeurs dans My, (K) et M, (K)
respectivement. Montrer que t — A(t)B(t) est C! sur I, et donner I'expression de sa dérivée.

Exemple. Soit ¢t — A(t) une application C' sur I intervalle, a valeurs dans M,,(K). Montrer que t — (A(t))2
est C! sur I, et donner I’expression de sa dérivée.

Exemple. Soit F' un espace euclidien, t — f(t) et t — g(t) deux applications C! sur I intervalle, & valeurs
dans F. Montrer que t — (f(t), g(t)) et t — || f(¢)||*> sont C! sur I, et donner I'expression de leurs dérivées.

Multilinéarité

2025-2026 http://mpi.lamartin.fr 3/9


http://mpi.lamartin.fr

o
S * . . . N
Q M PI 470. Dérivation, intégration des fonctions vectoriclles de variakle réelle

Proposition. Soit Fi, Fs,...,F,,G des espace normés de dimensions finies, I un intervalle de R. Si M
Fiy x Fy x -+ x F, = G est mutlilinéaire et que les f; : I — F; sont dérivables en a, alors :

M(fi,for- s fp): I — G
t o= M(fi(t), fa(t), -, fo(t))

est dérivable en a et :

(M(frs a3 ) (@) = M(fi(a), fa(a), -, fp(@)) + M(fr(a), fi(a)s .., fo(@)) + ...
+M(f1(a)7f2(a)""7 ;(a))

1.3.5 Dérivation d’une fonction composée

Proposition. Soit I, J deux intervallesde R, ¢ : I - Ret g : J — F. On suppose :
e o(I)yCJ
e @ dérivable en a
o g dérivable en ¢(a)

Alors g o ¢ est dérivable en a et :
(go @) (a) =¢'(a) g (¢(a)

Proposition. Avec les notations précédentes, si g est C' sur J et ¢ est C' sur I, alors g o ¢ est C' sur I.

1.3.6 Caractérisation par les fontions coordonnées

Proposition. Soit B = (ey,...,e,) une base de F, et f; les applications coordonnées de f : I — F dans la
base B. Alors f est dérivable en a si et seulement si chaque f; I'est. Dans ce cas :

Proposition. Avec les notations précédentes, f est C! si et seulement si chaque f; ’est.

cost —sint

Exemple. Justifier que ¢ — (sint cost

) est de classe C! sur R, et calculer sa dérivée.

1.3.7 Caractérisation des fonctions constantes

Théoréeme.

Soit f : I — F une fonction continue sur I, dérivable sur I'intérieur I de I. Alors f est constante si et
seulement si sa dérivée est nulle sur I.

1.4 Fonctions de classe C*

Définition. On a déja défini le fait que f soit de classe C' : elle est dérivable et sa dérivée est continue. On
définit la classe C* par récurrence : f est C**1 si f(¥) est de classe C1.
On note f*) ou 3%.
On dit que f est de classe C* lorsqu’elle est C* pour tout k.
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Proposition. Si f, g sont de classe C*¥ sur I & valeurs dans F, \, i € K, alors A\f + pg est de classe C* et :

(Af +1g)® = Af0 4 g™
CF(I, F) est un espace vectoriel.

Proposition. Si f, g sont de classe C* sur I a valeurs dans F et G respectivement, B : Ex F — G est bilinéaire,
alors B(f,g) est de classe C* et :

k
(B(f, g))(k) =y (?)B(f(i)yg(ki))
i=0

Proposition. Si f est de classe C* sur I & valeurs dans F, ¢ est de classe C* sur J intervalle de R et ¢(J) C I,
alors f o ¢ est de classe C* sur J et :

VEe J, (fop)(t)=¢'(t) f'(¢1))

Proposition. Soit B = (e1,...,e,) une base de F, et f; les applications coordonnées de f : I — F dans la
base B. Alors f est C* sur I si et seulement si chaque f; I’est. Dans ce cas :

n

veel, fO) =" fM (t)e;

i=1

Limite de la dérivée, classe C* par prolongement

Théoréme.

Soit f: I - Fetael. Si

o f est continue sur I (en particulier en a)
o f est dérivable sur I \ {a}

. f1(t) — ¢

t—a

alors f est dérivable en a, et f’(a) = ¢ (et donc f’ est continue en a).

Théoréme.

Soit f : I~ {a} — F. Si

o festCFsur I\ {a}

o f,f, .., f% admettent en a une limite £, ¢y, ..., £} respectivement.

alors f se prolonge en a de faicon C* en posant f(a) = ¢, alors f(!)(a) = ¢; pour tout i.

Intégration des fonctions a valeurs vectorielles

Intégrale d’une fonction en escalier sur un segment

Définition. Soit f : I =[a,b] — F. On dit que f est en escalier lorsqu’il existe une subdivdision (ao, ..., a,)

de [a, b] telle que sur chaque intervalle Ja;, a;+1[, f est constante, et on note v; cette constante.
Avec les notations précédente, pour f en escalier, on définit I'intégrale de f sur [a,b] par :

qui ne dépend pas du choix de la subdivision adaptée a f.
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Intégrale d’une fonction continue par morceaux sur un segment

Rappel. Toute fonction continue par morceaux sur un segment, a valeurs dans un espace normé de dimension
finie, est limite uniforme sur ce segment d’une suite de fonctions en escalier.

Preuve. Dans une base donnée, on approche chaque fonction coordonnée. O

Définition. Soit f : [a,b] — F une fonction continue par morceaux, et (g, )nen une suite de fonctions en escalier
b

qui converge uniformément vers f sur [a, b]. Alors ( / gn(t)dt) o converge, et sa limite est indépendante
a
du choix de la suite (g,,)n. On appelle intégrale de f sur [a,b] cette limite commune.
Proposition. Relation de Chasles.

Proposition. Si f et g sont continues par morceaux sur [a, b], A, 4 € K, alors Af + ug est continue par morceaux
sur [a,b] et :
b b b
[ Ot +u@a=x [ swyaesn [ g
a a a
Proposition. Soit f continue par morceaux sur [a, b], & valeurs dans F', et u € L(F,G). Alors uo f est continue

par morceaux sur [a, bl et :
b
/ wo f(t) / f@t) dt
a

Proposition. Soit f continue par morceaux sur [a, ], & valeurs dans F. Soit B = (ey,...,e,) une base de F et
fi les applications coordonnées de f. Alors :

b n
/a f(t)dt:;(/lfi(t)dt)el

C’est-a-dire que les coordonnées de 'intégrale sont les intégrales des fonctions coordonnées.

cost —sin t)

z
Exemple. Calculer /0 A(t)dt ot A(t) = (sint cost

Proposition. Soit f : [a,b] — F continue par morceaux et || - || une norme sur F'. Lorsque a < b :
b b

[ rwa < [Ciswla
a a

Proposition. Soit f continue par morceaux sur [a,b], & valeurs dans F. Soit (f,), une suite de fonctions
continues par morceaux, qui converge uniformément sur [a,b] vers une fonction f continue par morceaux.

Alors : ,
/fn dtm/(lf(t)dt

Sommes de Riemann

Proposition. Soit f continue par morceaux sur [0, 1]. Alors :
b
n Z f n——+00 /(; f(t) dt

Proposition. Soit f continue par morceaux sur [a, b]. Alors :

b—a '~ b—a
n Zf(a n n—>+00/f

k=0
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2.4 Primitives

Définition. On appelle primitive de f : I — F toute fonction F' : I — F dérivable telle que F' = f.
Théoreme.

Soit f : [ — Feta€l. Sif estcontinue sur I, alors f posséde une unique primitive qui s’annule en a,

et c’est : .
F: :c*—)/ f(t)dt

2.5 Accroissements finis, formules de Taylor

Inégalité des accroissaments finis.

Soit f : I — F une fonction C! sur I et M > 0 tel que :

vt € Ja, b, |f' (Ol < M
Alors :
1£(6) = f(a)ll < M]||b—al

Formule de Taylor avec reste intégral.

Soit f : I — F une fonction de classe C"*!, alors pour tout a,z € I :

" (z—a)* T —1)2
z) = Z %f(k)(a) + / %f(nﬂ)(t) dt
k=0 ’ & ’

ou encore, pour tout a € [ et h tel quea+h €1 :

n

at+h _\n
fla+h) =Y Z—Tf(k)(a) + / %ﬂ“l)(a +t)dt

k=0

Inégalité de Taylor-Lagrange.

Soit f : I — F une fonction de classe C"*?, telle que f*1) bornée sur I. Alors pour tout a,z € I :

— (z— a)® x—
‘f(x)—z—( " ()| < E= o,

~

= (n+1)!
ou encore, pour tout a € [ et h tel quea+h €1 :
flat ) =32 0@ < Ty o
k! S (n+1)! >

Formule de Taylor-Young.

Soit f : I — F une fonction de classe C™, alors pour tout a € I, au voisinage de h — 0 :

fla+h)= Z f““) ) + h(h)

oue(h) — 0p.
h—0

On note o(h™) pour désigner la fonction vectorielle h — h"c(h).
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'Exercices

Soit F plan euclidien de dimension 2, et f : t + f(¢) une fonction de classe C*
sur R. On suppose que t — || f(¢)]| est constante. Montrer que, pour tout ¢ :

f(t) L f(t)
On consideére :
f:]-1,1] — R?
t o (e, 2t
( 1—2 )
et :
u: R - R
(z,y) = z+y

Calculer u (/2 f@t) dt).
0

Soit E un espace vectoriel normé de dimension finie, F' un sous-espace vecto-
riel de E et f : [a,b] — F une fonction continue par morceaux. On suppose

b
que, pour tout t € [a,b], f(t) € F. Montrer que / f)dt e F.

Petits problemes d’entrainement

“n

Soit E un espace euclidien, et f : [a,b] — E une application continue. On

suppose que :
b b
/ IIf(t)IIdt—| / F(tydt

On note u le vecteur unitaire de E défini par :

1 b
u=— [ f@®)dt
I IIf(t)IIdt/a w

Pour tout ¢ € [a,b], on décompose f(t) selon Vect(u) O Vect(u)t sous la
forme :

f(t) = a(t)u +o(t)
(a) Montrer que « et v sont continues sur [a, b].

b
(b) Démontrer que / v(t) dt est orthgonal & u.

a

b b
(c) Démontrer que/ a(t)dt:/ IIf ()] dt.

(d) Démontrer que, pour tout ¢ € [a,b], a(t) < || f(t)]].
(e) En déduire que, pour tout ¢ € [a,b], f(t) = ||f()]u.

(f) Le résultat est-il encore vrai si 'on ne suppose pas E euclidien ?

Soit M : R — Ma,41(R) une application de classe C! telle que :
Vz €R, M(z) M(z) =1,

Montrer que M’(z) n’est inversible pour aucune valeur z € R.

Soit Py,..., P, € R,—1[X]. On définit, pour x € R :

D(z) = det (P V). .

%]

Montrer que D est constante sur R.

n
(=
N
(-]
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Pour n € N* et x réel, on définit :

T 1 0 ... 0
22 /2! x 1
3 /21 2 /9|
Dy(z) = x ./3. x?/2!
0
: 1
x™/n! 22/2!

(a) Montrer que D,, est dérivable, et exprimer pour n > 2 D}, (x) en fonction
de Dn—l (l‘)

(b) En déduire l'expression de D,,(x).

Pour aq,...,a,,r € R, calculer :
a1 +x x x
x as +x
: T
x xr ap+x

Soit f : [0,1] — E telle que f(0) = 0 et dérivable en 0 & droite. Déterminer
la limite, pour n — 400, de :

e

=1

Soit f : [a,b] — F de classe C! telle que f(a) = 0. Montrer que :

b
\ [ styar

Soit f : R — E une fonction de classe C? & valeurs dans un espace normé
de dimension finie. On suppose f et f” bornées, et on note My = || f]co,

My = [ f"]loo-

_q)?
=9 gy 170

<
2 t€la,b]

(a) Soit z € R. Montrer que, pour tout h > 0 :

2My  hM>
!
< 2270
7@ < 250+
(b) En déduire que f’ est bornée, et que :

1 lloo < 2/ MoM>

(c) Préciser I’étude précédente pour montrer que :

oo < V/2MoM>

Soit A,B € M,(R) et f : t+— det(A+ tB). Montrer que f est dérivable
sur R et que :
vt € R, f'(t) = tr (Com(A +tB) " B)

n
(=
N
(-]
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