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Séries à termes dans un evn de dimension finie

Cours 2
1 Séries à termes dans un espace vectoriel normé de dimension finie . . . . . . . . . . . . . . . . . . 2

1.1 Somme partielle, convergence, divergence, somme, reste d’une série convergente . . . . . . 2
1.2 Divergence grossière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Opérations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Caractérisation par les coordonnées dans une base . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Convergence absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Application : séries de matrices, séries d’endomorphismes . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Exponentielle de matrice, d’endomorphisme en dimension finie . . . . . . . . . . . . . . . 3
2.2 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Annexe : pourquoi la convergence absolue implique la convergence . . . . . . . . . . . . . . . . . 5

Exercices 5
Exercices et résultats classiques à connaître . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Exponentielle d’une matrice antisymétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Déterminant de l’exponentielle d’une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
L’exponentielle d’une matrice est un polynôme de cette matrice . . . . . . . . . . . . . . . . . . . 5

Exercices du CCINP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Petits problèmes d’entrainement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2025-2026 http://mpi.lamartin.fr 1/7

http://mpi.lamartin.fr


2
0
2
6

MPI 570. Séries à termes dans un evn de dimension finie

On reprend essentiellement dans ce chapitre la théorie des séries numériques, et on l’adapte aux evn. Dans tout
le chapitre, E désigne un espace vectoriel muni d’une norme ‖ · ‖.

1 Séries à termes dans un espace vectoriel normé de dimension finie

1.1 Somme partielle, convergence, divergence, somme, reste d’une série convergente
Définition. Soit (un)n∈N une suite d’éléments de E. On s’intéresse à la série

∑
un.

• Sn =

n∑
k=0

uk est la somme partielle d’ordre n.

• La série
∑

un converge lorsque la suite (Sn)n∈N converge dans l’espace vectoriel normé E, c’est-à-dire
s’il existe S ∈ E tel que : ∥∥∥∥∥

n∑
k=0

uk − S

∥∥∥∥∥ −−−−−→
n→+∞

0

On dit qu’elle diverge sinon.

• En cas de convergence, on appelle somme de la série, et on note
+∞∑
n=0

un, la limite de la suite des sommes

partielles.

Remarque. Étudier une série, c’est déterminer si elle converge ou si elle diverge.

Définition. Lorsque la série
∑

un converge, on peut définir son reste d’ordre n, avec les notations précédentes :

Rn = S − Sn =

+∞∑
k=n+1

uk

Proposition. La suite des restes est bien définie lorsque
∑

un converge, et Rn −−−−−→
n→+∞

0.

1.2 Divergence grossière
Proposition. Si la série

∑
un converge, alors la suite (un)n converge vers 0

Remarque. Il s’agit d’une condition nécessaire.

Définition. Lorsque (un)n ne converge pas vers 0, on dit que la série
∑

un diverge grossièrement.

1.3 Opérations
Proposition. Soit

∑
un et

∑
vn deux séries convergentes, λ et µ deux scalaires. Alors la série

∑
(λun + µvn)

converge et :
+∞∑
n=0

(λun + µvn) = λ

+∞∑
n=0

un + µ

+∞∑
n=0

vn

Corollaire. L’ensemble des séries convergentes est un espace vectoriel, et l’application
∑

un 7→
+∞∑
n=0

un y est

linéaire.
Lien suite-série. Soit (un)n une suite à valeurs dans E. On a :

la suite (un)n converge ⇐⇒ la série
∑

(un+1 − un) converge

Proposition. La convergence et la valeur de la somme d’une série convergente est indépendante du choix de la
norme sur E qui est de dimension finie.
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1.4 Caractérisation par les coordonnées dans une base
Définition. Soit

∑
un une série à termes dans E, et B = (e1, . . . , ep) une base de E. Pour tout n ∈ N, on peut

écrire :

un = u(1)
n e1 + · · ·+ u(p)

n ep =

p∑
i=1

u(i)
n ei

l’unique écriture de un comme C.L. de B.
La suite (u

(i)
n )n∈N s’appelle la i-ème suite coordonnée de (un)n.

Proposition. Avec les notations précédentes,∑
un converge ⇐⇒ ∀i ∈ {1, . . . , p},

∑
u(i)
n converge

et dans ce cas :
+∞∑
n=0

un =

(
+∞∑
n=0

u(p)
n

)
e1 + · · ·+

(
+∞∑
n=0

u(p)
n

)
ep =

p∑
i=1

(
+∞∑
n=0

u(i)
n

)
ei

Remarque. La convergence de
∑

un est caractérisée par la convergence de ses séries coordonnées dans une base B fixée.

1.5 Convergence absolue
Définition. Soit

∑
un une série à termes dans E. On dit que

∑
un converge absolument si et seulement si

la série numérique
∑

‖un‖ converge.

Remarque. Lorsque E = R ou C, la norme la valeur absolue ou le module, et on retrouve bien la convergence absolue
des séries numériques.

Remarque. On ne confondra pas la convergence absolue de
∑

un dans (E, ‖ · ‖) evn de dimension finie, avec la conver-
gence normale de

∑
fn dans l’espace B(X,K) des fonctions bornées, qui est la convergence de la série numérique∑

‖fn‖∞.

Théorème.

Dans E espace vectoriel normé de dimension finie, si
∑

un converge absolument, alors
∑

un converge.

Preuve. Une justification est proposée en annexe.

2 Application : séries de matrices, séries d’endomorphismes

2.1 Exponentielle de matrice, d’endomorphisme en dimension finie
Définition.

• Pour A ∈ Mp(K), on définit :

exp(A) = eA =
+∞∑
n=0

1

n!
An

• Pour u ∈ L(E) où E est un K-espace vectoriel de dimension finie, on définit :

exp(u) = eu =

+∞∑
n=0

1

n!
un
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2.2 Exemples

Proposition. Si D =


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 ap

 est diagonale, alors exp(D) =


ea1 0 · · · 0

0 ea2
. . .

...
...

. . . . . . 0
0 · · · 0 eap

.

Proposition. Si T =


a1 ? · · · ?

0 a2
. . .

...
...

. . . . . . ?
0 · · · 0 ap

 est triangulaire supérieure, alors exp(T ) est de la forme :

exp(T ) =


ea1 ∗ · · · ∗

0 ea2
. . .

...
...

. . . . . . ∗
0 · · · 0 eap



Proposition. Si N ∈ Mp(K) est nilpotente, alors exp(N) =

p−1∑
k=0

1

k!
Nk.

2.3 Propriétés
Proposition. Soit A,B ∈ Mp(K) deux matrices semblables, et P ∈ GLp(K) telle que A = PBP−1. Alors :

exp(A) = P exp(B)P−1

Corollaire. Soit A ∈ Mp(C). Alors Sp(exp(A)) = {eλ, λ ∈ Sp(A)}.
Proposition.

• L’application exp Mp(K) → Mp(K) est continue.

• Pour E evn de dimension finie, exp L(E) → L(E) est continue.

Proposition. Soit A,B ∈ Mp(K), telles que AB = BA.

• exp(A+B) = exp(A) exp(B) = exp(B) exp(A)

• exp(A) est inversible et exp(A)−1 = exp(−A).

Proposition. Soit u, v ∈ L(E) où E est un evn de dimension finie, tels que u ◦ v = v ◦ u.

• exp(u+ v) = exp(u) ◦ exp(v) = exp(v) ◦ exp(u)

• exp(u) est inversible et exp(u)−1 = exp(−u).

Remarque. En pratique, pour calculer exp(A) lorsque A est quelconque, on décompose A sous la forme A = D + N

où D est diagonalisable, N nilpotente et ND = DN . Ce résultat n’étant pas au programme, on se laisse guider par
l’énoncer.
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3 Annexe : pourquoi la convergence absolue implique la convergence
Théorème.

Dans E espace vectoriel normé de dimension fi-
nie, si

∑
un converge absolument, alors

∑
un

converge.

Preuve. Soit B = (e1, . . . , ep) une base de E. Les normes sur E
étant équivalentes, on peut choisir comme norme :

‖x‖∞ =
p

Max
i=1

|xi|

où x =

p∑
i=1

xiei est l’écriture de x comme C.L. de B.

On note (u
(i)
n )n les suites coordonnées de (un)n, et on remarque

que, pour tout i :

∀n ∈ N, |u(i)
n | 6 ‖un‖∞

Par majoration, on a donc établi que, pour tout i,
∑

|u(i)
n |

converge, c’est-à-dire que la série numérique
∑

u
(i)
n converge

absolument, donc converge. Ceci suffit à conclure.

Exercices et résultats classiques à connaître

Exponentielle d’une matrice antisymétrique

570.1

Soit a ∈ R. Calculer exp
(
0 −a
a 0

)
.

570.2
Soit M une matrice carrée d’ordre n, antisymétrique. Montrer que exp(M) est orthogonale.

Déterminant de l’exponentielle d’une matrice

570.3
Soit A ∈ Mp(R). Montrer que :

det(exp(A)) = exp(tr(A))

L’exponentielle d’une matrice est un polynôme de cette matrice

570.4
Soit A ∈ Mp(K). Montrer que exp(A) est un polynôme de A.
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Exercices du CCINP

570.5 40

Soit A une algèbre de dimension finie admettant e pour élément unité et
munie d’une norme notée || ||.
On suppose que : ∀(u, v) ∈ A2, ||u.v|| 6 ||u||.||v||.

1. Soit u un élément de A tel que ‖u‖ < 1.

(a) Démontrer que la série
∑

un est convergente.

(b) Démontrer que (e− u) est inversible et que (e− u)−1 =

+∞∑
n=0

un.

2. Démontrer que, pour tout u ∈ A, la série
∑ un

n!
converge.

570.6 54.22

Soit E l’ensemble des suites à valeurs réelles qui convergent vers 0.

2. On pose : ∀ u = (un)n∈N ∈ E, ||u|| = Sup
n∈N

|un|.

(b) Prouver que : ∀ u = (un)n∈N ∈ E,
∑ un

2n+1
converge.

570.7 61.23

On note Mn (C) l’espace vectoriel des matrices carrées d’ordre n à coefficients
complexes.
Pour A = (ai,j)16i6n

16j6n
∈ Mn (C), on pose : ‖A‖ = Max

16i6n
16j6n

|ai,j |.

2. Démontrer que : ∀ (A,B) ∈ (Mn (C))
2, ‖AB‖ 6 n ‖A‖ ‖B‖.

Puis, démontrer que, pour tout entier p > 1, ‖Ap‖ 6 np−1 ‖A‖p.

3. Démontrer que, pour toute matrice A ∈ Mn (C), la série
∑ Ap

p!
est

absolument convergente.
Est-elle convergente ?

Exercices

570.8

Soit A ∈ Mp(K). Montrer que exp(A)
>
= exp(A>).

570.9
Soit u ∈ L(E) un endomorphisme de E K-espace vectoriel normé de dimension
finie p. Montrer qu’il existe P ∈ Kp−1[X] tel que :

exp(u) = P (u)

570.10

Soit A =

1 j j2
j j2 1
j2 1 j

.

(a) Étudier la diagonalisabilité de A, déterminer les polynômes minimal et
caractéristique de A.

(b) Calculer exp(A).

570.11

Soit A =

 3 1 2
1 1 1
−2 −1 −1

. Calculer exp(A).

570.12

Soit A =

0 0 0
0 0 1
0 −1 0

. Calculer exp(A).
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Petits problèmes d’entrainement

570.13 -

Soit A ∈ Mp(K), et ‖ · ‖ une norme sur Mp(K) qui vérifie, pour tout
M,N ∈ Mp(K) :

‖MN‖ 6 ‖M‖‖N‖

On suppose que ‖A‖ < 1.

(a) Montrer que, pour tout n ∈ N∗ : ‖An‖ 6 ‖A‖n

(b) Montrer que
∑

Ak converge absolument.

(c) Montrer que Ip −A est inversible et que (Ip −A)−1 =

+∞∑
n=0

An.

570.14

Soit a ∈ R∗ et A =

 0 a a2

1/a 0 a
1/a2 1/a 0

.

(a) Calculer le polynôme minimal de A.

(b) Calculer exp(A).

570.15
Soit A ∈ Mn(C).

(a) On suppose que A3 = A2. Calculer exp(A).

(b) On suppose que A4 +A3 − 2A2 = 0. Calculer exp(A).

2
0
2
5
-2
0
2
6

http://mpi.lamartin.fr
7/

7

http://mpi.lamartin.fr

	Cours
	Séries à termes dans un espace vectoriel normé de dimension finie
	Somme partielle, convergence, divergence, somme, reste d'une série convergente
	Divergence grossière
	Opérations
	Caractérisation par les coordonnées dans une base
	Convergence absolue

	Application : séries de matrices, séries d'endomorphismes
	Exponentielle de matrice, d'endomorphisme en dimension finie
	Exemples
	Propriétés

	Annexe : pourquoi la convergence absolue implique la convergence
	Exercices
	Exercices et résultats classiques à connaître
	Exponentielle d'une matrice antisymétrique
	Déterminant de l'exponentielle d'une matrice
	L'exponentielle d'une matrice est un polynôme de cette matrice

	Exercices du CCINP
	Exercices
	Petits problèmes d'entrainement






