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On reprend essentiellement dans ce chapitre la théorie des séries numériques, et on I'adapte aux evn. Dans tout
le chapitre, E désigne un espace vectoriel muni d’une norme || - ||.

Séries a termes dans un espace vectoriel normé de dimension finie

Somme partielle, convergence, divergence, somme, reste d’une série convergente

Définition. Soit (uy)nen une suite d’éléments de E. On s’intéresse a la série > uy,.
n

« 5, = Zuk est la somme partielle d’ordre n.
k=0

e La série > u, converge lorsque la suite (S, )nen converge dans l’espace vectoriel normé E, c’est-a-dire
s'il existe S € E tel que :

n
E u — S| ——0
n—-+oo
k=0
On dit qu’elle diverge sinon.
+oo
e En cas de convergence, on appelle somme de la série, et on note Z Uy, la limite de la suite des sommes

n=0

partielles.

Remarque. Etudier une série, c’est déterminer si elle converge ou si elle diverge.

Définition. Lorsque la série > u,, converge, on peut définir son reste d’ordre n, avec les notations précédentes :

+oo
Ry=S-8,= >

k=n-+1

Proposition. La suite des restes est bien définie lorsque ) u,, converge, et R, —+> 0.
-_— n—-+0oo

Divergence grossiéere

Proposition. Si la série > u, converge, alors la suite (u,), converge vers 0
Remarque. Il s’agit d’une condition nécessaire.

Définition. Lorsque (u,), ne converge pas vers 0, on dit que la série > u,, diverge grossiérement.

Opérations

Proposition. Soit > u, et Y v, deux séries convergentes, A et i deux scalaires. Alors la série > (Auy, + povy,)
converge et :

—+oo —+oo +oo
> Oht b ) =AYt 63t
n=0 n=0 n=0
—+oo
Corollaire. L’ensemble des séries convergentes est un espace vectoriel, et 'application > u, — Z U, y est
n=0

linéaire.
Lien suite-série. Soit (u,), une suite & valeurs dans E. On a :

la suite (uy)n converge <= la série g (Un+1 — up) converge

Proposition. La convergence et la valeur de la somme d’une série convergente est indépendante du choix de la
norme sur F qui est de dimension finie.
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1.4 Caractérisation par les coordonnées dans une base

Définition. Soit ) u,, une série & termes dans E, et B = (e1,...,ep,) une base de E. Pour tout n € N, on peut
écrire :

P
Up = U%l)el + 4 uﬁf)ep = Zuﬁf)ei
i=1

I'unique écriture de u,, comme C.L. de B.
La suite (uﬁf))ne,\. s’appelle la i-éme suite coordonnée de (uy, ).

Proposition. Avec les notations précédentes,

Zun converge <= Vi€ {l,...,p}, Zuﬁf) converge

et dans ce cas :
400 400 +o00 p +oo
Zun = (Z ugf’)> e1+ -+ <Z u%p)> ep = Z (Z u%”) €;
n=0 n=0 n=0

i=1 \n=0

Remarque. La convergence de > u,, est caractérisée par la convergence de ses séries coordonnées dans une base B fixée.

1.5 Convergence absolue

Définition. Soit > u,, une série & termes dans E. On dit que ) u,, converge absolument si et seulement si
la série numérique Y ||u,|| converge.

Remarque. Lorsque F = R ou C, la norme la valeur absolue ou le module, et on retrouve bien la convergence absolue
des séries numériques.

Remarque. On ne confondra pas la convergence absolue de Y u,, dans (E, || -||) evn de dimension finie, avec la conver-
gence normale de Y f, dans 'espace B(X,K) des fonctions bornées, qui est la convergence de la série numérique
2 fnllee-

Théoreme.

| Dans E espace vectoriel normé de dimension finie, si ) u,, converge absolument, alors Y u,, converge.

Preuve. Une justification est proposée en annexe. O

2 Application : séries de matrices, séries d’endomorphismes

2.1 Exponentielle de matrice, d’endomorphisme en dimension finie

Définition.

o Pour A € M, (K), on définit :
+oo 1
exp(A) = et = A"
n!

n=0

o Pour u € L(F) ou E est un K-espace vectoriel de dimension finie, on définit :
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2.2 Exemples

ar 0 0 e 0 0
az
Proposition. Si D = 0 a est diagonale, alors exp(D) = 0 e
0 0
0 0 ap 0 0 e
a; *
Proposition. Si T = 0 a est triangulaire supérieure, alors exp(T') est de la forme :
—_— SO
0 0 a
et ke *
az
ep)=| 0 °
L%
0 0 e%
p—1 1
Proposition. Si N € M, (K) est nilpotente, alors exp(V) = Z HN’“.
k=0

2.3 Propriétés

Proposition. Soit A, B € M, (K) deux matrices semblables, et P € GL,(K) telle que A= PBP~!. Alors :

exp(A) = Pexp(B)P™*

Corollaire. Soit A € M, (C). Alors Sp(exp(A)) = {e*, X € Sp(A)}.

Proposition.
o L’application exp M,(K) — M,,(K) est continue.

o Pour E evn de dimension finie, exp L(E) — L(E) est continue.
Proposition. Soit A, B € M, (K), telles que AB = BA.
o exp(A+ B) = exp(A) exp(B) = exp(B) exp(A)
o exp(A) est inversible et exp(A4)~! = exp(—A).
Proposition. Soit u,v € L(E) ol E est un evn de dimension finie, tels que uwov = v ow.
e exp(u+ v) = exp(u) o exp(v) = exp(v) o exp(u)
o exp(u) est inversible et exp(u) ™! = exp(—u).

Remarque. En pratique, pour calculer exp(A) lorsque A est quelconque, on décompose A sous la forme A = D + N
ou D est diagonalisable, N nilpotente et ND = DN. Ce résultat n’étant pas au programme, on se laisse guider par

I’énoncer.
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Annexe : pourquoi la convergence absolue implique la convergence

P

M' ouzx= Zaciei est I’écriture de x comme C.L. de B.
Dans F espace vectoriel normé de dimension fi- izl(,-) . i
R ; On note (us,” ) les suites coordonnées de (uy, )n, €t on remarque
nie, si Y u, converge absolument, alors > u, que, pour tout i :
converge. .
Vn e N, [ul?] < flunllo
Preuve. Soit B = (e1,...,ep) une base de E. Les normes sur E )
étant équivalentes, on peut choisir comme norme : Par majoration, on a donc établi que, pour tout ‘i, > |u£: ) |
P converge, c’est-a-dire que la série numérique 3wy’ converge
Iz oo = I\Z/Izalx |5 ] absolument, donc converge. Ceci suffit a conclure. |
Exercices et résultats classiques a connaitre
Exponentielle d’'une matrice antisymétrique
570.1
. 0 —a
Soit a € R. Calculer exp a 0/
570.2
Soit M une matrice carrée d’ordre n, antisymétrique. Montrer que exp(M) est orthogonale.
Déterminant de I'exponentielle d’une matrice
570.3
Soit A € M,(R). Montrer que :
det(exp(A)) = exp(tr(A))
L’exponentielle d’une matrice est un polyn6me de cette matrice
570.4
Soit A € M, (K). Montrer que exp(A) est un polynéme de A.
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'Exercices du CCINP

Soit A une algébre de dimension finie admettant e pour élément unité et
munie d’une norme notée || ||.
On suppose que : ¥(u,v) € A2, [[u.v]] < ||ul].]|v]].

GNp 40

1. Soit w un élément de A tel que |lul| < 1.

(a) Démontrer que la série E u' est convergente.

+oo
(b) Démontrer que (e — u) est inversible et que (e — u)~! = Z u.
n=0
uTL
2. Démontrer que, pour tout u € A, la série Z — converge.
n!
570.6 Gip 54.22

Soit E l'ensemble des suites a valeurs réelles qui convergent vers 0.

2. On pose : Yu = (un)nen € E, ||ul| = Sup |u,]|.
neN

(b) Prouver que : Vu = (un)neNn € E, Z 2:11 converge.

GNP 61.23

On note M,, (C) I’espace vectoriel des matrices carrées d’ordre n & coefficients
complexes.

Pour A = (a;,;)1<i<n € My (C), on pose : ||A|| = Max |a; ;|

1<j<n 1<i<n

1<gsn

2. Démontrer que : ¥ (4, B) € (M,, (C))?, [|AB|| < n|/A| || B
Puis, démontrer que, pour tout entier p > 1, [|AP|| < nP~1 | A|".

AP
3. Démontrer que, pour toute matrice A € M, (C), la série Z — est
p!
absolument convergente.

Est-elle convergente ?

'Exercices |

Soit A € M,,(K). Montrer que exp(A)" = exp(AT).

Soit u € L(FE) un endomorphisme de E K-espace vectoriel normé de dimension
finie p. Montrer qu’il existe P € K,_1[X] tel que :

exp(u) = P(u)

Soit A=1[j j* 1
R

(a) Etudier la diagonalisabilité de A, déterminer les polynoémes minimal et
caractéristique de A.

(b) Calculer exp(A).

3 1 2
Soit A= 1 1 1 |. Calculer exp(A).
-2 -1 -1
0 0 0
Soit A=[0 0 1]. Calculer exp(A4).
0 -1 0

n
(=
N
(-]

*IdW
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Petits problemes d’entrainement

ST0.13]

Soit A € Mp(K), et || - || une norme sur M,(K) qui vérifie, pour tout
M,N € M,(K) :
[MN]| < [|M]|[|N]]

On suppose que || 4| < 1.
(a) Montrer que, pour tout n € N* : ||A™]] < ||A]|™

(b) Montrer que Y. A* converge absolument.

+oo
(c) Montrer que I, — A est inversible et que (I, — A)~' = Z A"
n=0

0 a a?
SoitaeR*et A=| 1/a 0 a
1/a*> 1/a 0

(a) Calculer le polynéme minimal de A.

(b) Calculer exp(A).

Soit A € M,,(C).
(a) On suppose que A% = A2. Calculer exp(A).

(b) On suppose que A* + A3 — 242 = (. Calculer exp(A).

On propose dans cet exercice une autre démonstation du théoréme affirmant
que toute série absolument convergente d’un evn de dimension finie converge.
On considére F, muni d’une norme || - ||, et > u,, une série que 'on suppose
) )
n

absolument convergente. On note S,, = Z Uk
k=0

(a) Montrer que (Sy), est bornée.

Comme E est de dimension finie, on peut donc extraire de (S,), une suite
(Se(n))n qui converge vers une limite £.

(b) Montrer que la suite (S,, — Sy(n))n converge vers Op.

(¢) Montrer que > u, converge.

Soit u € L(FE) un endomorphisme de E K-espace vectoriel normé de dimension
finie. Montrer que :

1 n
(IdE + nu) — exp(u)

n——+00
(&)

1
Comparer — et ~%-.

Indication : i ok

Soit N € M,,(R) une matrice nilpotente. Comparer les espaces :

Ker(N) et Ker(exp(N) — I,,)

Soit A, B € M,(R). Montrer que :

<exp (%) exp (ff)) e exp(A + B)

Soit A € M,,(K), et ||-|| une norme sous-multiplicative sur M, (K). On suppose
que |4 < 1.
+o0o
(a) Calculer ZA’“.
k=0
+o0o
(b) Calculer Z kAR
k=0

n
(=
N
(-]

*IdW
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Soit A € M,,(C). Montrer I’équivalence entre les trois propositions suivantes :

(i) Toute valeur propre de M est en module < 1;

(#) La suite (A™),, tend vers 0;

(#4i) La série Y A™ converge.

n
(=
N
(-]

*IdW
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