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On reprend essentiellement dans ce chapitre la théorie des suites et des séries de fonctions à valeurs dans R
ou C, et on l’adapte aux fonctions entre deux evn de dimensions finies.

1 Suites de fonctions
1.1 Convergence simple

Définition. Soit (fn)n une suite de fonctions définies sur A partie de E evn de dimension finie, à valeurs dans
F evn de dimension finie, et f : A → F une fonction. On dit que (fn)n converge simplement vers f
sur A si et seulement si, pour tout x ∈ A fixé :

fn(x) −−−−−→
n→+∞

f(x)

Remarque.
• Pour faire l’étude pratique de la convergence simple, on commence par fixer x ∈ A, et on étudie la suite (vectorielle,

d’éléments de F ) (fn(x))n∈N.
• On peut quantifier cette définition par :

∀x ∈ A, ∀ε > 0, ∃N ∈ N t.q. ∀n > N, ‖fn(x)− f(x)‖F 6 ε

1.2 Interlude : la norme infinie sur un evn de dimension finie
Définition. Soit F un evn de dimension finie, et A ⊂ E une partie d’un evn de dimension finie. On définit sur

B(A,F ), l’espace des fonctions bornées A → F , la norme infinie en posant, pour f ∈ B(A,F ) :

N∞(f) = Sup
x∈A

(‖f(x)‖F )

Proposition. Si on change la norme de F en une norme qui lui est équivalente, on change la norme N∞ en une
norme qui lui est équivalente.

Remarque. On suppose F de dimension finie, et donc ‖ ·‖1F et ‖ ·‖2F sont automatiquement équivalentes. La proposition
précédente permet de justifier que N1

∞ et N2
∞ sont toujours équivalentes, même si l’espace vectoriel B(A,F ) n’est

pas de dimension finie.

1.3 Convergence uniforme
Définition. Soit (fn)n une suite de fonctions définies sur A partie de E evn de dimension finie, à valeurs dans

F evn de dimension finie, et f : A → F une fonction. On dit que (fn)n converge uniformément vers f
sur A si et seulement si la suite numérique

(
N∞(fn − f)

)
n

converge vers 0.
Remarque.

• Pour que cette définition ait un sens, on doit naturellement supposer que, au moins à partir d’un certain rang, la
fonction f − fn soit bornée sur A.

• On peut quantifier la définition :

∀ε > 0, ∃N ∈ N t.q. ∀n > N, ∀x ∈ A, ‖fn(x)− f(x)‖F 6 ε

Théorème.
La convergence uniforme implique la convergence simple.

Étude pratique pour montrer la convergence uniforme.

• On commence par déterminer la limite simple de (fn)n, notée f .

• On cherche à majorer ‖fn(x)−f(x)‖F indépendamment de x ∈ A par une suite numérique qui converge
vers 0.

• Le calcul explicite de N∞(fn − f) est parfois possible.
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Étude pratique pour montrer la non-convergence uniforme.

• On commence par déterminer la limite simple de (fn)n, notée f .

• S’il n’existe pas de rang à partir duquel fn − f est bornée, la convergence ne peut pas être uniforme.

• On peut montrer le non-transfert à la limite d’une propriété, comme la continuité.

• On exhibe une suite (xn)n d’éléments de I telle que la suite
(
fn(xn)− f(xn)

)
n

ne converge pas vers 0.

1.4 Convergence uniforme sur tout compact
Définition. Soit (fn)n une suite de fonctions A ⊂ E : F et f : A → F .

On dit que (fn)n converge vers f uniformément sur tout compact si et seulement si pour tout
compact K ⊂ A, (fn|K)n converge uniformément vers f|K sur K.

1.5 Continuité de la limite
Transfert de continuité par convergence uniforme

Théorème.

Soit (fn)n une suite de fonctions définies sur A ⊂ E à valeurs dans F .
Si :

• pour tout n, fn est continue en a,

• (fn)n converge uniformément sur A (ou sur un voisinage de a) vers f ,

alors :

◦ f est continue en a.

Corollaire. Si (fn)n converge simplement sur A vers f , que les fn sont continues sur A mais que f n’est pas
continue sur A, alors la convergence n’est pas uniforme sur A.

Raisonnement classique. Si (fn)n converge simplement sur A vers f , que les fn sont continues sur A et qu’il
y a convergence uniforme sur tout compact de A, alors f est continue sur tout compact de A donc sur A.

1.6 Théorème de la double limite
Théorème de la double limite.

Soit (fn)n une suite de fonctions définies sur A ⊂ E à valeurs dans F et a un point adhérent à A.
Si :

• pour tout n, fn(x) admet une limite finie `n lorsque x → a,

• (fn)n converge uniformément vers f sur I,

alors :

◦ la suite (`n)n converge vers ` ∈ R,

◦ f(x) admet une limite lorsque x → a,

◦ cette limite est égale à `.
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Remarque.
• On peut symboliser la conclusion de ce théorème par :

lim
x→a

(
lim

n→+∞
fn(x)

)
= lim

n→+∞

(
lim
x→a

fn(x)
)

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème,
et masque les problèmes d’existence des limites envisagées et de mode de convergence de la suite de fonctions.

• Le théorème s’applique aussi lorsque A ⊂ R et que a = ±∞ est adhérent à A.

1.7 Intégration sur un segment/primitivation et convergence uniforme
Lemme. Soit (fn)n une suite de fonctions définies sur un intervalle I à valeurs dans F , et a ∈ I.

Si :

• (fn)n converge uniformément vers f sur tout segment K ⊂ I,

• les fn sont continues.

alors, en notant Gn(x) =

ˆ x

a

fn(t)dt et G(x) =

ˆ x

a

f(t)dt,

◦ (Gn)n converge uniformément vers G sur tout segment de I.

Remarque. Ainsi, la convergence uniforme sur tout segment se transmet par primitivation, à condition de prendre les
primitives qui s’annulent toutes en un même point a donné.

Théorème d’interversion limite-intégrale par cv uniforme sur un segment.

Soit (fn)n une suite de fonctions définies sur un segment [a, b], à valeurs dans F .
Si :

• (fn)n converge uniformément vers f sur [a, b],

• [a, b] est un segment,

• les fn sont continues.

alors :

◦ la suite

(ˆ b

a

fn(t)dt

)
n

converge,

◦
ˆ b

a

fn(t)dt −−−−−→
n→+∞

ˆ b

a

f(t)dt

Remarque. On peut symboliser la conclusion de ce théorème par :

lim
n→+∞

ˆ b

a

fn(t)dt =
ˆ b

a

lim
n→+∞

fn(t) dt

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème,
et masque les problèmes d’existence des limites envisagées et de mode de convergence de la suite de fonctions.

1.8 Limite d’une suite de fonctions de classe C1

Théorème de dérivabilité de la limite d’une suite de fonctions.

Soit (fn)n une suite de fonctions définies sur I intervalle, à valeurs dans F .
Si :

• pour tout n, fn est de classe C1 sur I,

4/11 http://mpi.lamartin.fr 2025-2026

http://mpi.lamartin.fr


2
0
2
6

MPI 580. Suites et séries de fonctions à valeurs dans un evn de dimension finie

• (fn)n converge simplement sur I vers f ,

• la suite des fonctions dérivées (f ′
n)n converge uniformément sur I vers une fonction g,

alors :

◦ f est de classe C1 sur I,

◦ f ′ = g.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

d
dx

(
lim

n→+∞
fn(x)

)
= lim

n→+∞

(
d

dxfn(x)
)

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème,
et masque les problèmes d’existence des limites et dérivées envisagées.

• La convergence uniforme de (fn)n n’entraîne pas la dérivabilité de la limite.

• Comme la dérivabilité est une propriété locale, on peut remplacer l’hypothèse de convergence uniforme sur I
de (f ′

n)n par l’hypothèse moins forte de convergence uniforme sur tout segment de I, ou d’autres intervalles
adaptés à la situation.

1.9 Extension aux fonctions de classe Ck

Théorème.

Soit (fn)n une suite de fonctions définie sur I intervalle, à valeurs dans F , et k ∈ N∗.
Si :

• pour tout n, fn est de classe Ck sur I,

• pour tout 0 6 j 6 k − 1, (f (j)
n )n converge simplement sur I vers une fonction gj ,

• la suite (f
(k)
n )n converge uniformément sur I vers une fonction gk,

alors :

◦ la limite simple g0 de (fn)n est de classe Ck sur I

◦ pour tout 1 6 j 6 k, g(j)0 = gj .

Remarque.

• On peut symboliser la conclusion de ce théorème par :

dk

dxk

(
lim

n→+∞
fn(x)

)
= lim

n→+∞

(
dk

dxk
fn(x)

)
qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème,
et masque les problèmes d’existence des limites et dérivées envisagées.

• Comme la dérivabilité est une propriété locale, on peut remplacer l’hypothèse de convergence uniforme sur I
des (f

(k)
n )n par l’hypothèse moins forte de convergence uniforme sur tout segment de I, ou d’autres intervalles

adaptés à la situation.

• Pour montrer que g0 est de classe C∞, on montre la convergence simple de (fn)n et la convergence uniforme de
toutes les (f

(j)
n )n, pour j > 1.
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2 Séries de fonctions
2.1 Convergence simple

Définition. Soit
∑

fn une série de fonctions A ⊂ E → F . On dit que
∑

fn converge simplement si et
seulement si, pour tout x ∈ A fixé, la série vectorielle

∑
fn(x) converge.

Dans ce cas, on définit :
S : A → F

x 7→
+∞∑
n=0

fn(x)

appelée somme de la série de fonctions
∑

fn.
Remarque.

• La convergence simple est la convergence point à point. On rédige toujours l’étude de la convergence simple en
travaillant « à x fixé ».

• Pour n ∈ N, on peut noter :

Sn : x 7→
n∑

k=0

fk(x)

Alors (Sn)n la suite de fonctions des sommes partielles de
∑

fn, et la convergence simple de
∑

fn est équivalente
à la convergence simple de (Sn)n.

• En cas de convergence simple sur I, on note :

Rn : x 7→
+∞∑

k=n+1

fk(x) = S(x)− Sn(x)

Alors la suite de fonctions (Rn)n converge simplement vers la fonction constante nulle sur A.

• On peut rencontrer des séries de fonctions qui sont indexées par n > n0.

2.2 Convergence uniforme
Définition. Soit

∑
fn une série de fonctions : A ⊂ E → F . On dit que

∑
fn converge uniformément sur A

si et seulement si la suite de fonctions (Sn)n de ses sommes partielles converge uniformément sur A.
Remarque. On peut quantifier la définition par :

∀ε > 0, ∃N t.q. ∀n > N, ∀x ∈ A,

∥∥∥∥∥
+∞∑

k=n+1

fk(x)

∥∥∥∥∥
F

6 ε

Proposition. La convergence uniforme d’une série de fonctions implique sa convergence simple.
Théorème.∑

fn converge uniformément sur A si et seulement si :®∑
fn converge simplement sur A

(Rn)n converge uniformément sur A vers 0

2.3 Convergence normale
Définition. Soit

∑
fn une série de fonctions : A ⊂ E → F . On dit que

∑
fn converge normalement sur A

si et seulement si : ®
fn est bornée sur A pour tout n∑

N∞(fn) converge
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Remarque.
• On rappelle que N∞(f) = Sup

x∈A
(‖f(x)‖F ). Le premier point permet de garantir l’existence de N∞(fn).

• On peut donner une définition moins forte, en ne travaillant que pour n > n0.
• Le second point est la convergence d’une série numérique.
• La convergence normale de

∑
fn, c’est la convergence de

∑
N∞(fn).

Théorème.

Soit
∑

fn une série de fonctions : A ⊂ E → F .
S’il existe une série numérique

∑
αn convergente et majorante, c’est-à-dire telle que :

∀n, ∀x, ‖fn(x)‖F 6 αn

où αn est positive, indépendante de x et t.g. d’une série convergente,
alors

∑
fn converge normalement.

Proposition. La convergence normale implique la convergence absolue en tout point.
Proposition. La convergence normale implique la convergence uniforme.

2.4 Transfert de continuité
Théorème.

Soit
∑

fn une série de fonctions : A ⊂ E → F .
Si :

•
∑

fn converge uniformément sur A (on note S sa somme),

• pour tout n, fn est continue sur A,

alors :

◦ S est continue sur A.

Raisonnement classique. Si
∑

fn converge uniformément sur tout compact K ⊂ A, et si les fn sont continues
sur A, alors S est continue sur tout K ⊂ A donc sur A.

Exemple.

• exp : Mp(K) → Mp(K) est continue sur Mp(K).

• Pour E espace vectoriel de dimension finie, exp : L(E) → L(E) est continue sur L(E).

Corollaire. Une série entière
∑

anz
n de variable complexe, dont le rayon de convergence est R :

• converge normalement sur tout disque DF (0, r) où r < R ;

• a une somme continue sur D(0, R).

2.5 Théorème de la double limite
Théorème de la double limite.

Soit
∑

fn une série de fonctions : A ⊂ E → F et a adhérent à A.
Si :

•
∑

fn converge uniformément sur A (on note S sa somme),

• pour tout n, fn admet une limite `n en a,
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alors :

◦ la série (vectorielle)
∑

`n converge (on note ` sa somme),

◦ la fonction S admet une limite en a,

◦ cette limite est égale à `.

Remarque. On peut symboliser la conclusion de ce théorème par :

lim
x→a

(
+∞∑
n=0

fn(x)

)
=

+∞∑
n=0

(
lim
x→a

fn(x)
)

mais cette « formule » ne présente pas les hypothèses d’application de ce théorème, et masque les problèmes de
convergence des séries et d’existence des limites envisagées.

2.6 Primitivation, intégration terme à terme sur un segment et convergence uniforme
Lemme. Soit

∑
fn une série de fonctions continues sur un intervalle I à valeurs dans F . Soit a ∈ I. Pour tout

n, on note Gn la primitive de fn qui s’annule en a.
Si :

•
∑

fn converge uniformément sur tout segment K ⊂ I (on note S sa somme),

alors :

◦ la série
∑

Gn converge uniformément sur tout segment K ⊂ I

◦
+∞∑
n=0

Gn est la primitive de
+∞∑
n=0

fn qui s’annule en a.

Théorème d’intégration terme à terme sur un segment par convergence uniforme.

Soit a < b, et
∑

fn une série de fonctions définies sur un segment [a, b], à valeurs dans F .
Si :

•
∑

fn converge uniformément sur [a, b] (on note S sa somme),

• [a, b] est un segment,

• les fn sont continues,

alors :

◦ la série
∑(ˆ b

a

fn(t)dt

)
converge,

◦
+∞∑
n=0

ˆ b

a

fn(t)dt =
ˆ b

a

S(t)dt

Remarque. On peut symboliser la conclusion de ce théorème par :

+∞∑
n=0

ˆ b

a

fn(t)dt =
ˆ b

a

+∞∑
n=0

fn(t) dt

Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème, et masque les problèmes de
convergence des séries envisagées.
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2.7 Somme d’une série de fonctions de classe C1

Théorème de dérivation terme à terme d’une série de fonctions.
Soit

∑
fn une série de fonctions définies sur I, à valeurs dans F .

Si :

•
∑

fn converge simplement sur I (on note S sa somme),

• pour tout n, fn est de classe C1 sur I,

• la série des dérivées
∑

f ′
n converge uniformément sur I,

alors :

◦ S est de classe C1 sur I,

◦ pour tout x : S′(x) =

+∞∑
n=0

f ′
n(x).

Remarque.
• On peut symboliser la conclusion de ce théorème par :

d
dx

+∞∑
n=0

fn(x) =

+∞∑
n=0

dfn
dx (x)

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème,
et masque les problèmes de convergence des séries et d’existence des dérivées envisagées.

• La convergence uniforme de
∑

fn n’entraîne pas la dérivabilité de la somme.
• Comme la dérivabilité est une propriété locale, on peut remplacer l’hypothèse de convergence uniforme sur I

de
∑

f ′
n par l’hypothèse moins forte de convergence uniforme sur tout segment de I, ou d’autres intervalles

adaptés à la situation.

2.8 Extension aux fonctions de classes Ck

Théorème.
Soit

∑
fn une série de fonctions définie sur I à valeurs dans F , et k ∈ N∗.

Si :

• pour tout n, fn est de classe Ck sur I,

• pour tout 0 6 j 6 k − 1,
∑

f
(j)
n converge simplement sur I,

• la série
∑

f
(k)
n converge uniformément sur I,

alors :

◦ la somme S =
+∞∑
n=0

fn est de classe Ck sur I

◦ pour tout 1 6 j 6 k, S(j) =

+∞∑
n=0

f (j)
n .

Remarque.
• On peut symboliser la conclusion de ce théorème par :(

+∞∑
n=0

fn

)(j)

(x) =

+∞∑
n=0

f (j)
n (x)

Mais cette « formule » ne présente pas les hypothèses d’application de ce théorème, et masque les problèmes
d’existence des limites et dérivées envisagées.
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• Comme la dérivabilité est une propriété locale, on peut remplacer l’hypothèse de convergence uniforme sur I
des

∑
f
(k)
n par l’hypothèse moins forte de convergence uniforme sur tout segment de I, ou d’autres intervalles

adaptés à la situation.
• Pour montrer que S est de classe C∞, on montre la convergence simple de

∑
fn et la convergence uniforme de

toutes les
∑

f
(j)
n , pour j > 1.

Exemple.

• Soit A ∈ Mp(K). L’application t 7→ exp(tA) est de classe C∞ sur R, et sa dérivée est t 7→ A exp(tA) =
exp(tA)A.

• Pour E espace vectoriel de dimension finie et u ∈ L(E), l’application t 7→ exp(tu) est de classe C∞ sur R,
et sa dérivée est t 7→ u ◦ exp(tu) = exp(tu) ◦ u.

Remarque. On retiendra :

d
dt
(

exp(tA)
)
= A exp(tA) = exp(tA)A

d
dt
(

exp(tu)
)
= u ◦ exp(tu) = exp(tu) ◦ u

3 Annexes
3.1 Annexe : équivalence des N∞

Définition. Soit F un evn de dimension finie, et
A ⊂ E une partie d’un evn de dimension finie.
On définit sur B(A,F ), l’espace des fonctions bor-
nées A → F , la norme infinie en posant, pour
f ∈ B(A,F ) :

N∞(f) = Sup
x∈A

(‖f(x)‖F )

Proposition. Si on change la norme de F en une
norme qui lui est équivalente, on change la norme
N∞ en une norme qui lui est équivalente.

Preuve. Soit ‖ · ‖1F et ‖ · ‖2F deux normes équivalentes, qui
satisfont :

∀y ∈ F, α‖y‖1F 6 ‖y‖2F 6 β‖y‖1F
Pour tout f ∈ B(A,F ), on a d’une part :

∀x ∈ A, ‖f(x)‖2F 6 β‖f(x)‖1F
6 βN1

∞(f) indépendant de x

donc N2
∞(f) 6 N1

∞(f) ;
et d’autre part :

∀x ∈ A, α‖f(x)‖1F 6 ‖f(x)‖2F
6 N2

∞(f) indépendant de x

donc αN1
∞(f) 6 N2

∞(f).
On a montré que N1

∞ et N2
∞ sont équivalentes.
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Petits problèmes d’entrainement

580.1 -
Soit n > 2.

(a) Pourquoi exp : Mn(K) → Mn(K) n’est ni surjective, ni injective.

(b) On munit Mn(K) d’une norme sous-multiplicative.

b1. Soit U ∈ Mn(K) telle que ‖U‖ < 1. Montrer que In +U est inver-
sible, et déterminer son inverse.

b2. Montrer que si ‖M‖ < 1
2 et exp(M) = In, alors M = 0.

b3. En déduire que, sur un voisinage de 0, si M et N commutent et
satisfont exp(M) = exp(N), alors M = N .

580.2
Soit A ∈ An(R) une matrice antisymétrique et f : Mn(R) → R∗

+ continue.
Montrer que :

Inf
x∈R

(
f(exp(xA)

)
> 0

580.3
Pour M ∈ Mn(C) nilpotente, on pose :

L(M) =
+∞∑
k=1

(−1)k−1

k
Mk

Montrer que :
∀t ∈ R, exp

(
L(tM)

)
= In + tM

580.4
Pour M ∈ Mn(C) nilpotente, on pose :

L(M) =

+∞∑
k=1

1

k
Mk

On étudier la fonction f donnée par :

∀t ∈ R, f(t) = exp
(
− L(tM)

)
(a) Établir :

∀t ∈ R, f(t) =
n−1∏
k=1

exp
(
− tk

k
Mk
)

(b) Montrer que f est dérivable sur R et :

∀t ∈ R, (In − tM)f ′(t) = −Mf(t)

(c) Montrer que f ′ est constante.

(d) En déduire que exp
(
L(M)

)
= (In −M)−1.

580.5

On cherche les applications ϕ : R → Mn(R) dérivables, vérifiant :

∀x, y ∈ R, ϕ(x+ y) = ϕ(x)ϕ(y)

(a) Soit A ∈ Mn(R). Vérifier que t 7→ exp(tA) est solution.

(b) Soit ϕ une solution vérifiant ϕ(0) ∈ GLn(R).

b1. Calculer ϕ(0).

b2. Montrer que : ∀t ∈ R, ϕ′(t) = ϕ(t)ϕ′(0).

(c) En déduire qu’il existe A ∈ Mn(R) telle que ϕ(t) = exp(tA) pour tout
t ∈ R.

(d) On ne suppose plus ϕ(0) inversible. Déterminer les fonctions ϕ solutions
du problème.
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