Dérivation des fonctions numériques

Je me	souvie	ns :	2
	0.1	Dérivée	2
	0.2	Théorème de Rolle	
	0.3	Accroissements finis	2
	0.4	Opérations sur les fonctions dérivables	
	0.5	Fonctions de classe \mathcal{C}^k	
	0.6	Limite de la dérivée	
Cours 1	Annex	ces	
Exerci	ces		4
Exe	Exercices et résultats classiques à connaître		4
		est scindé simple sur \mathbb{R} , P' aussi	
		olongement \mathcal{C}^1	
Exe	_	u CCINP	
		lèmes d'entrainement	

Je me souviens

0.1 Dérivée

- 1. Comment définir la dérivée en a de $f:I\to\mathbb{K}$.
- 2. Équation de la tangente?
- 3. Une autre définition caractérisation de la dérivée?
- 4. Dérivée à droite? à gauche?
- 5. Lien entre dérivabilité et continuité?
- 6. Dérivée des fonctions $I \to \mathbb{C}$?
- 7. Quelle est la dérivée de $e^{(1+i)t}$?

0.2 Théorème de Rolle

On ne parle ici que de fonctions réelles.

- 8. Pour $f: I \to \mathbb{R}$, définir « f admet un maximum global en a ».
- 9. Pour $f:I\to\mathbb{R},$ définir « f admet un maximum local en a ».
- 10. Énoncer le théorème faisant le lien entre extremum local et annulation de la dérivée.
- 11. Énoncer le théorème de Rolle.

0.3 Accroissements finis

- 12. Quelle est l'égalité des accroissements finis?
- 13. Quelle est l'inégalité des accroissements finis?
- 14. Il y a un lien avec le théorème fondamental de l'analyse?
- 15. À quelle condition f dérivable est-elle constante?
- 16. À quelle condition f dérivable à valeurs réelles est-elle croissante?
- 17. À quelle condition f dérivable à valeurs réelles est-elle strictement croissante?

0.4 Opérations sur les fonctions dérivables

18.
$$(\lambda f + \mu g)'(x) =$$

19.
$$(f \times g)'(x) =$$

$$20. \left(\frac{f}{g}\right)'(x) =$$

21.
$$(g \circ f)'(x) =$$

22.
$$(f^{-1})'(x) =$$

0.5 Fonctions de classe C^k

- 23. Définir « f est de classe \mathcal{C}^1 sur I »
- 24. Définir « f est de classe \mathcal{C}^k sur I », où $k\in\mathbb{K}.$
- 25. Définir « f est de classe \mathcal{C}^{∞} sur I »
- 26. $(\lambda f + \mu g)^{(k)}(x) =$
- 27. Énoncer la formule de Leibniz.
- 28. Comment démontrer la formule de Leibniz?
- 29. Pour $f: I \to \mathbb{K}$ de classe \mathcal{C}^k et $\phi: J \to I$ de classe \mathcal{C}^k , que dire de $f \circ \phi$?

0.6 Limite de la dérivée

- 30. Énoncer le théorème limite de la dérivée.
- 31. Comment utiliser le résultat précédent pour prolonger à I de façon \mathcal{C}^1 une fonction définie sur $I \smallsetminus \{a\}$?

1 Annexes

1.1 Complément : le théorème de Darboux

Théorème de Darboux.

Soit $f: I \to \mathbb{R}$, dérivable. Alors f' satisfait la propriété des valeurs intermédiaires.

Remarque. Ce théorème est complètement hors programme. Il est intéressant lorsque f n'est pas de classe \mathcal{C}^1 , c'est-à-dire lorsque l'on ne peut pas appliquer le théorème des valeurs intermédiaires à f'.

Preuve.

• On suppose f dérivable sur [a,b], et on considère γ entre f'(a) et f'(b). On cherche $c \in [a,b]$ tel que $f'(c) = \gamma$. L'idée est celle du théorème de Rolle, pour lequel la

conclusion est analogue, mais avec $\gamma=0.$ On considère donc :

$$g: x \mapsto f(x) - \gamma t$$

g est continue sur le segment [a,b], donc admet un minimum et un maximum, par le théorème des bornes atteintes.

- Si le minimum ou le maximum est atteint en c ∈]a, b[, on a trouvé c tel que g'(c) = 0, c'est-à-dire f'(c) = γ.
- Sinon, le minimum et le maximum sont par exemple atteints en a et b respectivement, et donc $g'(a) \ge 0$ et $g'(b) \ge 0$. Par hypothèse, $g'(a) = f'(a) \gamma$ et $g'(b) = f'(b) \gamma$ sont de signes opposés, donc les deux inégalités ne peuvent être strictes. On a trouvé c (égal à a ou b) tel que g'(c) = 0, c'est-à-dire $f'(c) = \gamma$.

Exercices et résultats classiques à connaître

Si P est scindé simple sur \mathbb{R} , P' aussi

630.1

- (a) Montrer que, si $P \in \mathbb{R}[X]$ est un polynôme de degré $\geqslant 2$, scindé à racines simples, alors P' est aussi scindé à racines simples.
- (b) Le résultat est-il vrai si on suppose $P \in \mathbb{C}[X]$?
- (c) Montrer que, si $P \in \mathbb{R}[X]$ est un polynôme scindé, alors P' est aussi scindé.

Un prolongement \mathcal{C}^1

630.2

Montrer que la fonction, définie sur \mathbb{R}^* par :

$$f: x \mapsto x^3 \sin\left(\frac{1}{x}\right)$$

se prolonge à \mathbb{R} en une fonction de classe \mathcal{C}^1 .

Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions q et h sur leurs ensembles de définitions respectifs.

2. On pose $f(x) = \frac{e^{2x}}{1+x}$.

En utilisant la formule de Leibniz concernant la dérivée $n^{\text{ième}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

630.4

- 1. Énoncer le théorème des accroissements finis.
- 2. Soit $f:[a,b] \longrightarrow \mathbb{R}$ et soit $x_0 \in [a,b[$.

On suppose que f est continue sur [a, b] et que f est dérivable sur $]a, x_0[$ et sur $]x_0, b[$.

Démontrer que, si f' admet une limite finie en x_0 , alors f est dérivable en x_0 et $f'(x_0) = \lim_{x \to x_0} f'(x)$.

3. Prouver que l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse.

Indication : on pourra considérer la fonction g définie par : $g(x) = x^2 \sin \frac{1}{x}$ si $x \neq 0$ et g(0) = 0.

Exercices

630.5

Montrer que le polynôme :

$$\left((X^2 - 1)^n \right)^{(n)}$$

Utiliser les accroissements finis pour démontrer les inégalités :

- (a) $|\sin x| \leq |x|$ pour $x \in \mathbb{R}$
- (b) $\ln(1+x) \leqslant x$ pour $x \in \mathbb{R}_+$.

630.7

Montrer que, pour $n \in \mathbb{N}$:

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(\cos x) = \cos\left(x + n\frac{\pi}{2}\right) \text{ et } \frac{\mathrm{d}^n}{\mathrm{d}x^n}(\sin x) = \sin\left(x + n\frac{\pi}{2}\right)$$

630.8

Calculer, pour $n \in \mathbb{N}$, la dérivée n-ème de :

(a) x^k

(d) \cos^3

(b) $\frac{1}{x}$

(e) $\cos(x)e^{-x}$

(c) $(x^2 - x + 1)e^{-x}$

(f) $\frac{1}{x^2 - 1}$

Petits problèmes d'entrainement

630.9

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable sur \mathbb{R} . On suppose que f admet des limites finies et égales en $+\infty$ et en $-\infty$. Montrer qu'il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

630.10

(a) On définit sur \mathbb{R} :

$$\varphi(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

Montrer que φ est de classe \mathcal{C}^{∞} sur \mathbb{R} .

630. Dérivation des fonctions numériques

$$\psi(x) = \begin{cases} e^{\frac{2}{x^2 - 1}} & \text{si } x \in]-1, 1[\\ 0 & \text{sinon} \end{cases}$$

est aussi de classe \mathcal{C}^{∞} sur \mathbb{R} .

630.11

Montrer que, pour tout $n \in \mathbb{N}^*$:

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \operatorname{Arctan}(x) = \frac{P_n(x)}{(1+x^2)^n}$$

où P_n est un polynôme, scindé à racines simples sur \mathbb{R} .

630.12

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction bornée et dérivable. On suppose que la dérivée f' admet une limite ℓ en $+\infty$. Déterminer ℓ .

630.13

On considère :

$$f: x \mapsto \operatorname{Arctan}(x) + \sin(x)$$

- (a) Montrer que f n'a pas de limite en $+\infty$.
- (b) Montrer que f est majorée, et déterminer sa borne supérieure.
- (c) Montrer que la dérivée de f s'annule une infinité de fois sur \mathbb{R} .
- (d) Montrer que f n'admet pas de maximum global sur \mathbb{R} .

630.14

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 admettant une limite finie en $+\infty$ et en $-\infty$. Montrer que f'' s'annule.