

Intégration sur un segment des fonctions numériques

Je me	souvie	ns :	
1	L 'int ϵ	égrale comme un nombre	
	1.1	Fonctions continues par morceaux	
	1.2	Intégrale d'une fonctions cpm sur un segment	
	1.3	Sommes de Riemann	
2	L 'int ϵ	égrale comme une fonction de la borne d'en haut	
	2.4	Intégrale et primitive	
	2.5	Intégration par parties, changement de variable	
	2.6	Primitives usuelles	
	2.7	Formules de Taylor	
Cours			
3		xes	
	3.1	Annexe : intégrale d'une fonction en escalier sur un segment	
	3.2		
	3.3	Annexe : une construction de l'intégrale des fonctions cpm sur un segment	
	3.4	Complément : démonstration du théorème fondamental	
	3.5	Annexe: les formules de Taylor	
	3.6	Annexe: une démonstration du théorème sur les sommes de Riemann	
	3.7	Complément : une autre démonstration par la continuité uniforme	
	3.8	Annexe: deux primitives	
	9. 0	Timexe : dedx primitives	
Exerci			
Exe		et résultats classiques à connaître	
		ne de Riemann-Lebesgue	
	Intég	rale de Wallis	
		ation d'une somme de Riemann	
		ation d'une formule de Taylor	
		du CCINP	
		classiques	
		ntégrales et de primitives	
Pet	its prob	blèmes d'entrainement	

Je me souviens — l'intégrale comme un nombre

1.1 Fonctions continues par morceaux

- 1. Qu'est-ce qu'une **subdivision** du segment [a, b]?
- 2. Qu'est-ce qu'une fonction **continue par morceaux** sur [a, b]?
- 3. Que dire d'une combinaison linéaire de deux fonctions continues par morceaux? d'un produit de deux fonctions continues par morceaux?
- 4. Prêt à le démontrer?
- 5. Est-ce que l'ensemble $\mathcal{C}_{pm}([a,b],\mathbb{K})$ des fonctions continues par morceaux sur [a,b] possède une structure particulière?

1.2 Intégrale d'une fonctions cpm sur un segment

- 6. Quel est le lien entre $\int_a^b f(t) dt$ et $\int_b^a f(t) dt$?
- 7. Énoncer la relation de Chasles.
- 8. Qu'est-ce que la linéarité de l'intégrale?
- 9. Qu'est-ce que la positivité de l'intégrale? la croissance de l'intégrale?
- 10. Qu'est-ce que l'inégalité triangulaire pour les intégrales?
- 11. Que dire face à une intégrale nulle d'une fonction positive?

1.3 Sommes de Riemann

12. Que dit le théorème sur les sommes de Riemann?

Je me souviens — l'intégrale comme une fonction de la borne d'en haut

2.4 Intégrale et primitive

- 13. Qu'appelle-t-on **primitive** d'une fonction f?
- 14. Quelle est la classe des primitives de fonctions continues?
- 15. Que dire de deux primitives d'une même fonction sur un intervalle?
- 16. Énoncer le théorème fondamental, qui fait le lien entre intégrale et primitive.
- 17. Si f est continue, comment dériver $x \mapsto \int_{u(x)}^{v(x)} f(t) dt$?

2.5 Intégration par parties, changement de variable

- 18. Qu'appelle-t-on « intégration par parties »?
- 19. Comment faire un changement de variable pour le calcul d'une intégrale?

2.6 **Primitives usuelles**

- 20. Donner une primitive de $\frac{1}{\sqrt{1-x^2}}$.
- 21. Donner une primitive de $\ln x$.
- 22. Donner une primitive de $\frac{1}{1+x^2}$.
- 23. Donner une primitive de $\frac{1}{1-x^2}$.
- 24. Donner une primitive de $\frac{1}{1+x+x^2}$.

2.7 Formules de Taylor

- 25. Qu'est-ce que le polynôme de Taylor d'une fonction?
- 26. Énoncer la formule de Taylor avec reste intégral.
- 27. Comment démontrer la formule précédente?
- 28. Énoncer l'inégalité de Taylor-Lagrange.

Annexes

3

3.1 Annexe : intégrale d'une fonction en escalier sur un segment

Définition. Une fonction $f:[a,b] \to \mathbb{K}$ est en esca**lier** lorsqu'il existe une subdivision $(x_i)_{0 \le i \le n}$ du segment [a, b] telle que, pour tout i, la restriction $f_{||x_i,x_{i+1}||}$ soit une fonction constante. On note k_i sa valeur. On dit que la subdivision est adaptée

On appelle intégrale de f sur [a, b] le nombre :

$$\int_{a}^{b} f(t) dt = \sum_{i=0}^{n-1} k_i (x_{i+1} - x_i)$$

que l'on interprète géométriquement comme on le pense.

Remarque. Cette définition est indépendante du choix de la subdivision adpatée à f.

<u>Notation.</u> On note indifféremment $\int_a^b f(t) dt$, $\int_a^b f$, $\int_{[a,b]} f(t) dt$ ou $\int_{[a,b]} f$. Il n'est pas toujours judicieux de vouloir faire l'économie de l'écriture de la variable d'intégration.

Proposition. Pour f, g en escalier sur $[a, b], \lambda, \mu \in \mathbb{K}$:

•
$$\int_a^b (\lambda f + \mu g)(t) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt.$$

• Si
$$f \ge 0$$
 sur $[a, b]$, alors $\int_a^b f(t) dt \ge 0$.

• Si
$$f \leqslant g$$
 sur $[a,b]$, alors $\int_a^b f(t) \, \mathrm{d}t \leqslant \int_a^b g(t) \, \mathrm{d}t$.

3.2 Complément : approximation uniforme des fonctions cpm par des fonctions en escalier

Proposition. L'ensemble $\mathcal{E}([a,b],\mathbb{R})$ est dense dans $(\mathcal{C}_{pm}([a,b],\mathbb{R}),\|\cdot\|_{\infty})$, ce qui signifie que toute fonction continue par morceaux sur [a, b] est limite uniforme sur ce segment d'une suite de fonctions en escalier.

Preuve. Soit $f:[a,b]\to\mathbb{R}$. On veut construire une suite de fonctions en escalier qui tend, au sens de la norme $\|\cdot\|_{\infty}$, vers f.

• 1^{er} cas : si f est continue. Soit $n \in \mathbb{N}^*$. Par le théorème de Heine, f est uniformément continue sur le segment [a,b]. Ainsi, par définition appliquée à $\varepsilon = \frac{1}{n} > 0$, il existe $\eta_n > 0$ tel que :

$$\forall x, y \in [a, b], |x - y| \leqslant \eta_n \implies |f(x) - f(y)| \leqslant \varepsilon$$

Considérons alors p entier tel que $\frac{b-a}{p} < \eta_n,$ la subdivision régulière de [a,b] $\left(x_k=a+k\frac{b-a}{p}\right)_{0\leq b\leq p}$ et la fonction en escalier :

$$\forall k \in \{0, \dots, p-1\}, \ \forall x \in [x_k, x_{k+1}], \ g_n(x) = f(x_k)$$

complétée par $g_n(b) = f(b)$.

La fonction g_n ainsi définie est constante sur chaque $[x_k, x_{k+1}[$, donc en escalier.

De plus, pour tout $x \in [a,b[$, il existe $k \in \{0,\ldots,p-1\}$ tel que $x \in [x_k,x_{k+1}[$, donc $|x-x_k| \leqslant \frac{b-a}{p} < \eta_n$ et par suite:

$$|f(x) - g_n(x)| = |f(x) - f(x_k)| \le \frac{1}{n}$$

La majoration, aussi valable pour x = b, est indépendante de x donc :

$$||f - g_n||_{\infty}^{[a,b]} \leqslant \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

On a donc montré que $(g_n)_n$ converge uniformément vers f sur [a, b].

• 2^{e} cas: si f est continue par morceaux.

On considère $(y_j)_{0\leqslant j\leqslant q}$ une subdivision de [a,b] adaptée à f, c'est-à-dire que chaque $f_{|]y_j,y_{j+1}[}$ est continue et admet une limite finie à droite en y_j et à gauche en y_{j+1} . Elle se prolonge donc à $[y_j, y_{j+1}]$ en une fonction continue notée f_j .

On applique à f_j le point précédent, ce qui fournit une suite $(g_n^j)_n$ qui converge uniformément vers f_j sur $[y_j, y_{j+1}]$. On définit alors, pour tout $n \in \mathbb{N}^*$ et $x \in [a, b]$:

$$h_n(x) = \begin{cases} g_n^j(x) & \text{si } x \in]y_j, y_{j+1}[\\ f(y_j) & \text{si } x = y_j \end{cases}$$

La fonction h_n est en escalier sur [a, b], et, pour tout x,

$$|f(x) - h_n(x)| = \begin{cases} |f_j(x) - g_n^j(x)| \leqslant \frac{1}{n} & \text{si } x \in [y_j, y_{j+1}[\\ 0 \leqslant \frac{1}{n} & \text{si } x = y_j \end{cases}$$

donc

$$||f - h_n||_{\infty}^{[a,b]} \leqslant \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

On a donc montré que $(h_n)_n$ converge uniformément vers f sur [a, b].

Si f est continue par morceaux sur le segment [a, b], à valeurs réelles, alors pour tout $\varepsilon > 0$, il existe φ, ψ en escalier sur [a, b] telles que:

$$\varphi \leqslant f \leqslant \psi$$
 et $\psi - \varphi \leqslant \varepsilon$

Preuve.~ Par la propositin précédente, on sait qu'il existe ψ en escalier telle que $\|(f+\frac{\varepsilon}{4})-\psi\|_{\infty} \leqslant \frac{\varepsilon}{4}$, c'est-à-dire :

$$f \leqslant \psi \leqslant f + \frac{\varepsilon}{2}$$

On pose
$$\varphi = \psi - \frac{\varepsilon}{2}$$
.

4 / 13 2025-2026 http://mpi.lamartin.fr

3.3 Annexe : une construction de l'intégrale des fonctions cpm sur un segment

Construction. Soit f une fonction continue par morceaux sur [a, b]. On considère :

$$\begin{split} \mathcal{I}^-(f) &= \big\{ \int_{[a,b]} \varphi, \ \varphi \in \mathcal{E}([a,b],\mathbb{R}), \ \varphi \leqslant f \big\} \\ \mathcal{I}^+(f) &= \big\{ \int_{[a,b]} \psi, \ \psi \in \mathcal{E}([a,b],\mathbb{R}), \ f \leqslant \psi \big\} \end{split}$$

 $\mathcal{I}^-(f)$ admet une borne supérieure, $\mathcal{I}^+(f)$ admet une borne inférieure, et :

$$\operatorname{Sup} \mathcal{I}^{-}(f) = \operatorname{Inf} \mathcal{I}^{+}(f)$$

Cette valeur commune s'appelle l'intégrale de f sur [a,b].

Preuve.

• f est continue par morceaux sur [a,b], donc il existe une subdivision $(x_i)_{0\leqslant i\leqslant n}$ adaptée à f, c'est-à-dire telle que, pour tout i, la restriction $f_{|]x_i,x_{i+1}[}$ se prolonge à $[x_i,x_{i+1}]$ en une fonction continue, donc bornée. On note M_i un majorant. Alors $M=\max\{f(x_0),\ldots,f(x_n),M_0,\ldots,M_{n-1}\}$ est un majorant

de f sur [a,b]. C'est aussi une fonction en escalier (constante) majorant f, donc M(b-a) majore $\mathcal{I}^-(f)$. Ainsi, $\mathcal{I}^-(f)$ est une partie non vide, majorée, de \mathbb{R} , donc admet une borne supérieure. On la note S.

- $\mathcal{I}^+(f)$ admet une borne inférieure pour des raisons analogues. On la note I.
- $\forall \varphi, \psi$ en escalier telles que $\varphi \leqslant f \leqslant \psi$, on a $\int_a^b \varphi \leqslant \int_a^b \psi$. Comme ceci est vrai pour tout φ , c'est que $\int_a^b \psi$ est un majorant, donc par définition de la borne sup, $S \leqslant \int_a^b \psi$. Mais ceci est vrai pour tout ψ , donc S est un minorant et par définition de la borne inf, $S \leqslant I$.
- Fixons $\varepsilon > 0$. En appliquant le corollaire de la section précédente avec $\frac{\varepsilon}{b-a}$, il existe deux fonctions en escalier φ et ψ telles que :

$$\varphi \leqslant f \leqslant \psi$$
 et $\psi - \varphi \leqslant \frac{\varepsilon}{b-a}$

On a $\int_a^b \varphi \leqslant S \leqslant I \leqslant \int_a^b \psi,$ donc :

$$I - S \leqslant \int_{a}^{b} \psi - \varphi \leqslant \varepsilon.$$

Comme ceci est vrai pour tout $\varepsilon>0,$ c'est que $I-S\leqslant 0.$ On a montré que I=S.

3.4 Complément : démonstration du théorème fondamental

Théorème.

Soit I intervalle de \mathbb{R} . Soit $f:I\to\mathbb{K}$ continue et $a\in I$. Il existe une unique primitive de f sur I qui s'annule en a, et cette primitive est :

$$x \mapsto \int_{a}^{x} f(t) dt$$

Preuve.

• Existence

Définissons, pour $x \in I : F(x) = \int_{a}^{x} f(t) dt$.

On veut montrer que F est une primitive de f sur I, c'est-à-dire que, pour tout $x \in I$:

$$F(x+h) = F(x) + h f(x) + o_{h\to 0}(h)$$

Soit $x\in I$ fixé. Si x est une extrémité de I, un seul des points suivants s'applique.

– Au voisinage de $h \stackrel{>}{\rightarrow} 0$, $x + h \in I$ et :

$$F(x+h) - F(x) - hf(x) = \int_x^{x+h} f(t) dt - hf(x)$$
$$= \int_x^{x+h} f(t) - f(x) dt$$

 donc

$$|F(x+h) - F(x) - hf(x)| \le \int_x^{x+h} |f(t) - f(x)| dt$$

On revient à la définition de limite avec des ε . Soit $\varepsilon>0$ fixé. Par définition de la continuité de f en x, il existe $\eta>0$ tel que :

$$\forall y \in I, |y - x| \leqslant \eta \implies |f(y) - f(x)| \leqslant \varepsilon$$

Lorsque $h\leqslant \eta$, tout $t\in [x,x+h]$ satisfait $|t-x|\leqslant \eta$, donc $|f(t)-f(x)|\leqslant \varepsilon$. On a donc, pour $h\leqslant \eta$:

$$|F(x+h) - F(x) - hf(x)| \le \int_{x}^{x+h} \varepsilon dt$$

= εh

– Au voisinage de $h \stackrel{\leq}{\sim} 0$, on travaille de façon symétrique en faisant attention à l'ordre des bornes d'intégration.

On a donc montré :

$$\forall \varepsilon > 0, \exists \eta > 0,$$

$$|h| \leqslant \eta \implies |F(x+h) - F(x) - hf(x)| \leqslant \varepsilon h$$

c'est-à-dire :

$$F(x+h) - F(x) - hf(x) = \underset{h \to 0}{o}(h)$$

Ce qui prouve que F est dérivable en x, et que F'(x) = f(x).

• Unicité

Si F et G conviennent, pour tout $x \in I$:

$$(F - G)'(x) = 0$$

Il s'agit d'une fonction dérivable à dérivée nulle sur un intervalle, donc F-G est constante, c'est donc que F=G.

2025-2026 http://mpi.lamartin.fr 5/13

3.5 Annexe : les formules de Taylor

Formule de Taylor avec reste intégral.

Soit f de classe C^{n+1} sur un intervalle I contenant 0, à valeurs réelles ou complexes. Alors :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \underbrace{\int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt}_{R_{n}(x)}$$

Corollaire. Pour $a \in I$, on a :

$$f(a+x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} x^{k} + \int_{a}^{a+x} \frac{(a+x-t)^{k}}{k!} f^{(k+1)}(t) dt$$

Preuve. On raisonne par récurrence sur n.

 Pour n = 0, la formule proposée est le théorème fondamental :

$$f(x) = f(0) + \int_0^x f'(t) dt$$

- Soit $n \in \mathbb{N}$. On suppose la formule vérifiée pour ce n. On

considère alors f de classe C^{n+2} . On calcule :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$$

$$\text{par H.R. à } f \text{ qui est } \mathcal{C}^{n+1}$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \left[\frac{-(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_{0}^{x}$$

$$- \int_{0}^{x} \frac{-(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

$$\text{par parties avec } f^{(n+1)} \text{ qui est } \mathcal{C}^{1}$$

$$= \sum_{k=0}^{n+1} \frac{f^{(k)}(0)}{k!} x^{k} + \int_{0}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

• Par le principe de récurrence, la formule est établie pour tout n.

П

Inégalité de Taylor-Lagrange.

Si
$$f$$
 est C^{n+1} sur I et $0 \in I$, alors:
$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \right| \leq \frac{|x|^{n+1}}{(n+1)!} \|f^{n+1}\|_{\infty}^{I}$$

Corollaire. Pour $a \in I$, on a :

$$\left| f(a+x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} x^{k} \right| \leq \frac{|x|^{n+1}}{(n+1)!} ||f^{n+1}||_{\infty}^{I}$$

3.6 Annexe : une démonstration du théorème sur les sommes de Riemann

Théorème.

Pour
$$f$$
 k -lipschizienne sur $[a, b]$:

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$$

Remarque. Le résultat est vrai, et à utiliser, sous l'hypothèse moins forte que f est continue par morceaux sur [a,b].

Preuve. On ne traite que ici que le cas où f est k-lipschitzienne, par exemple lorsque f est de classe \mathcal{C}^1 sur [a,b], avec $\|f'\|_{\infty} \leq k$. On note :

$$S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n})$$

On calcule, en posant $a_k = a + k \frac{b-a}{n}$:

$$\left| \int_{a}^{b} f(t) - S_{n}(f) \right| = \left| \sum_{k=0}^{n-1} \left(\int_{a_{k}}^{a_{k+1}} f(a_{k}) - f(t) \, dt \right) \right|$$

$$\leqslant \sum_{k=0}^{n-1} \left(\int_{a_{k}}^{a_{k+1}} |f(a_{k}) - f(t)| \, dt \right)$$

$$\leqslant \sum_{k=0}^{n-1} \left(\int_{a_{k}}^{a_{k+1}} k(t - a_{k}) \, dt \right)$$

$$= \sum_{k=0}^{n-1} \left(k \left[\frac{(t - a_{k})^{2}}{2} \right]_{a_{k}}^{a_{k+1}} \right)$$

$$= \sum_{k=0}^{n-1} \left(k \frac{(b - a)^{2}}{2n^{2}} \right)$$

$$= \frac{k(b - a)^{2}}{2n} \xrightarrow{n \to +\infty} 0$$

6/13 http://mpi.lamartin.fr 2025-2026

3.7 Complément : une autre démonstration par la continuité uniforme

Définition. Soit f continue sur [a, b].

Pour $\sigma = (x_0, \dots, x_n)$ subdivision de [a, b], on appelle **pas** de la subdivision le réel $\delta(\sigma) = \max_{0 \le i \le n-1} x_{i+1} - x_i$.

$$R_{\sigma}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) f(\xi_i)$$

où $\xi_i \in [x_i, x_{i+1}]$.

Remarque. Dans le paragraphe précédent, les subdivisions considérées sont de pas $\frac{b-a}{n}$ et ξ_i est toujours choisi comme étant égal à x_i .

Théorème.

Pour f continue par morceaux sur [a, b].

$$R_{\sigma}(f) \xrightarrow{\delta(\sigma) \to 0} \int_{a}^{b} f(t) dt$$

Preuve. On traite le cas des fonctions continues sur [a,b], celui des fonctions continues par morceaux s'y ramenant comme au \S 3.2.

On interprète $R_{\sigma}(f)$ comme l'intégrale d'une fonction en escalier sur [a,b] :

$$R_{\sigma}(f) = \int_{a}^{b} h(t) \, \mathrm{d}t$$

où h est constante égale à $f(\xi_i)$ sur chaque $]x_i, x_{i+1}[$. Fixons $\varepsilon > 0$.

La fonction f est continue sur le segment [a,b], donc est uniformément continue. Par définition appliquée à $\frac{\varepsilon}{b-a}$, il existe donc $\eta>0$ tel que :

$$\forall x, y \in [a, b], |x - y| \le \eta \implies |f(x) - f(y)| \le \frac{\varepsilon}{b - a}$$

Si $\delta(\sigma) \leqslant \eta$, alors pour tout $i \in \{0,\dots,n-1\}$ et tout $t \in]x_i,x_{i+1}[$:

$$|t - \xi_i| \leqslant x_{i+1} - x_i \leqslant \delta(\sigma) \leqslant \eta$$

donc:

$$|f(t) - h(t)| = |f(t) - f(\xi_i)| \leqslant \frac{\varepsilon}{b - a}$$

et donc

$$\left| \int_{a}^{b} f(t) dt - R_{\sigma}(f) \right| = \left| \int_{a}^{b} f(t) - h(t) dt \right|$$

$$\leq \int_{a}^{b} |f(t) - h(t)| dt$$

$$\leq \int_{a}^{b} \frac{\varepsilon}{b - a} dt$$

$$= \varepsilon$$

On a montré, en revenant à la définition, que :

$$R_{\sigma}(f) \xrightarrow{\delta(\sigma) \to 0} \int_{a}^{b} f(t) dt$$

3.8 Annexe: deux primitives

Proposition. Sur \mathbb{R} :

$$\int_{-\infty}^{x} \frac{1}{\sqrt{1+t^2}} dt = \ln(x + \sqrt{1+x^2}) + \text{cte}$$

Preuve. On calcule

$$\int_0^x \frac{1}{\sqrt{1+t^2}} dt = \int_0^{\sinh^{-1}(x)} \frac{1}{\sqrt{1+\sinh^2 u}} \cosh u \, du$$
en posant $t = \sinh u$, $dt = \cosh u \, du$

$$u \, de \, 0 \, \grave{a} \, \sinh^{-1}(x)$$

$$= \int_0^{\sinh^{-1}(x)} 1 \, du$$

$$\operatorname{car} \operatorname{ch}^2 - \sinh^2 = 1$$

$$= \sinh^{-1}(x)$$

On résout donc l'équation :

$$\begin{split} \sh y = x &\iff \frac{\mathrm{e}^y - \mathrm{e}^{-y}}{2} = x \\ &\iff \mathrm{e}^{2y} - 2\mathrm{e}^y x - 1 = 0 \\ &\iff \mathrm{e}^y \text{ est racine de } t^2 - 2tx - 1 \\ &\iff \mathrm{e}^y = x \pm \sqrt{x^2 + 1} \text{ avec } \Delta = \dots \\ &\iff y = \ln(x + \sqrt{x^2 + 1}) \text{ car } \mathrm{e}^y > 0 \end{split}$$

donc
$$\operatorname{sh}^{-1}(x) = \ln(x + \sqrt{x^2 + 1}).$$

Proposition. Sur $]1, +\infty[$:

$$\int^x \frac{1}{\sqrt{t^2 - 1}} dt = \ln\left(x + \sqrt{x^2 - 1}\right) + \text{cte}$$

Preuve. On calcule:

$$\int_{2}^{x} \frac{1}{\sqrt{t^{2}-1}} dt = \int_{\mathrm{ch}^{-1}(2)}^{\mathrm{ch}^{-1}(x)} \frac{1}{\sqrt{\mathrm{ch}^{2} u - 1}} \operatorname{sh} u \, \mathrm{d} u$$
en posant $t = \operatorname{ch} u$, $\mathrm{d} t = \operatorname{sh} u \, \mathrm{d} u$

$$u \, \mathrm{de} \, \mathrm{ch}^{-1}(2) \, \dot{\mathrm{a}} \, \mathrm{ch}^{-1}(x)$$

$$\mathrm{ch} \, \mathrm{réalise} \, \mathrm{bijection} \, [0, +\infty[\to [1, +\infty[$$

$$= \int_{\mathrm{ch}^{-1}(2)}^{\mathrm{ch}^{-1}(x)} \frac{\sinh u}{\sqrt{\mathrm{sh}^{2} u}} \, \mathrm{d} u$$

$$\mathrm{car} \, \mathrm{ch}^{2} - \mathrm{sh}^{2} = 1$$

$$= \int_{\mathrm{ch}^{-1}(2)}^{\mathrm{ch}^{-1}(x)} 1 \, \mathrm{d} u$$

$$\mathrm{car} \, \mathrm{sh} \, u \geqslant 0 \, \mathrm{sur} \, \mathbb{R}_{+}$$

$$= \mathrm{ch}^{-1}(x) - \mathrm{ch}^{-1}(2)$$

On résout donc l'équation, où $y\geqslant 0$:

$$ch y = x \iff \frac{e^y + e^{-y}}{2} = x$$

$$\iff e^{2y} - 2e^y x + 1 = 0$$

$$\iff e^y \text{ est racine de } t^2 - 2tx + 1$$

$$\iff e^y = x \pm \sqrt{x^2 - 1} \text{ avec } \Delta = \dots$$

$$\iff y = \ln(x \pm \sqrt{x^2 - 1})$$

Mais

$$\ln(x-\sqrt{x^2-1})=\ln\left(\frac{x-(x^2-1)}{x+\sqrt{x^2-1}}\right)$$
 quantité conjuguée
$$=-\ln(x+\sqrt{x^2-1})$$

Comme y est positif, on conserve la plus grande des deux valeurs, et donc $\mathrm{ch}^{-1}(x) = \ln(x+\sqrt{x^2-1}).$

8/13 http://mpi.lamartin.fr **2025-2026**

Exercices et résultats classiques à connaître

Lemme de Riemann-Lebesgue

640.1

Soit $f:[a,b]\to\mathbb{R}$ une fonction de classe \mathcal{C}^1 . Montrer que :

$$\int_{a}^{b} f(t)\sin(nt) \, \mathrm{d}t = 0$$

Intégrale de Wallis

640.2

Pour $n \in \mathbb{N}$, on pose :

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, \mathrm{d}t$$

(a) Montrer que, pour tout $n \in \mathbb{N}$:

$$I_{n+2} = \frac{n+1}{n+2}I_n$$

(b) Donner une expression de I_n à l'aide de factorielles.

Utilisation d'une somme de Riemann

640.3

Déterminer un équivalent simple de :

$$u_n = \sum_{k=1}^{n} \frac{1}{k^2 + n^2}$$

Utilisation d'une formule de Taylor

640.4

Utiliser une formule de Taylor pour montrer que, pour tout $x \in \mathbb{R}$:

$$\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

640.5

GNP 79.1

Soit a et b deux réels tels que a < b.

1. Soit h une fonction continue et positive de [a, b] dans \mathbb{R} .

Démontrer que $\int_{a}^{b} h(x)dx = 0 \Longrightarrow h = 0$.

Exercices

640.6

Montrer que, pour $n \in \mathbb{N}$:

$$\int_0^{\frac{\pi}{2}} \cos^n t \, \mathrm{d}t = \int_0^{\frac{\pi}{2}} \sin^n t \, \mathrm{d}t$$

640.7

Soit $f: \mathbb{R} \to \mathbb{K}$ une fonction continue et T périodique. Montrer que la valeur

$$\int_{a}^{a+T} f(t) \, \mathrm{d}t$$

ne dépend pas du choix de a. On la note $\int_{[T]} f(t) dt$.

640.8

Utiliser l'intégration par parties pour calculer :

(a)
$$\int_0^x e^{-t} \sin t \, dt$$

(a)
$$\int_0^x e^{-t} \sin t \, dt$$
 (c)
$$\int_1^x \frac{\operatorname{Arctan} t}{t^2} \, dt$$
 (d)
$$\int_0^x t^3 \sin t \, dt$$

(b)
$$\int_{1}^{x} \frac{\ln t}{t^3} dt$$

(d)
$$\int_0^x t^3 \sin t \, dt$$

Calculer la dérivée, sur $]1, +\infty[$, de :

$$x \mapsto \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}$$

640.10

Montrer la convergence de la suite de terme général :

$$u_n = \frac{1}{n} \sum_{k=1}^n \sin\left(\frac{k\pi}{2n}\right)$$

640.11

Utiliser une formule de Taylor pour montrer que, pour tout $x \in]-1,1[$:

$$\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$$

Calculs d'intégrales et de primitives

640.12

Calculer les primitives suivantes :

(a)
$$\int_{0}^{x} \frac{\operatorname{Arctan}^{2} t}{1 + t^{2}} dt$$

(d)
$$\int_{-\infty}^{x} \sin t \, e^{2t} \, dt$$
(e)
$$\int_{-\infty}^{x} \frac{e^{2t}}{1 + e^{t}} \, dt$$

640. Intégration sur un segment des fonctions numériques

(b)
$$\int_{-\infty}^{x} \frac{\operatorname{Arcsin} t}{\sqrt{1-t^2}} \, \mathrm{d}t$$

(e)
$$\int_{-\infty}^{\infty} \frac{e^{2t}}{1+e^t} dt$$

(c)
$$\int_{-\infty}^{\infty} \frac{1}{t \ln^5 t} \, \mathrm{d}t$$

(f)
$$\int_{-\infty}^{x} \frac{1}{\cos tw} \, dt$$

640.13

Calculer les intégrales suivantes :

(d)
$$\int_0^1 \frac{1}{t + \sqrt{1 - t^2}} dt$$

640.14

Calculer les primitives des expressions suivantes :

(a)
$$\frac{1}{x^3 - x}$$

(d)
$$\frac{x-1}{x^2+2x+2}$$

(b)
$$\frac{x-2}{x(x+1)^2}$$

(e)
$$\frac{x}{x^3 - 1}$$

(c)
$$\frac{x+1}{x^3+x}$$

(f)
$$\frac{x}{x^4+1}$$

640.15

Déterminer une primitive des expressions suivantes :

(a) $\sin^4 x$

(c) $\cos^5 x$

(b) $\sin x \cos^3 x$

640.16

Déterminer une primitive des expressions suivantes :

(a)
$$\frac{1}{a^2 + x^2}$$

(b)
$$\frac{1}{\sqrt{a^2 - x^2}}$$

640.17

Soit $\lambda \in \mathbb{C} \setminus \mathbb{R}$, d'écriture algébrique $\lambda = a + ib$. Déterminer une primitive $\operatorname{sur} \mathbb{R} \operatorname{de} :$

$$t\mapsto \frac{1}{t-\lambda}$$

$$\int_0^{\pi} t \sin(t) e^{-t} dt$$

640.19

Calculer, par intégration par parties :

(a)
$$\int_0^1 (t-1)e^{2t} dt$$

$$(\mathrm{d}) \int_0^\pi t \sin t \, \mathrm{d}t$$

(b)
$$\int_0^1 \ln(t^2 + 1) dt$$

$$(e) \int_0^{\frac{\pi}{4}} \frac{t}{\cos^2 t} \, \mathrm{d}t$$

(c)
$$\int_0^{\frac{1}{2}} \operatorname{Arcsin} t \, dt$$

(f)
$$\int_0^1 t(\operatorname{Arctan} t)^2 dt$$

640. Intégration sur un segment des fonctions numériques

640.20

Calculer:

$$\int_0^{e^{\pi}} \sin(\ln t) dt$$

Petits problèmes d'entrainement

640.21

On considère, pour x > 0:

$$f(x) = \int_0^x \frac{e^{-t}}{x+t} dt$$

Démontrer que f est dérivable sur \mathbb{R}_+^* et donner l'expression de sa dérivée. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

|640.22| 🖄

640. Intégration sur un segment des fonctions numériques

(a) Pour $\alpha\geqslant 0,$ utiliser une somme de Riemann pour déterminer un équivalent simple de :

$$v_n = \sum_{k=1}^n k^{\alpha}$$

(b) Vérifier le résultat pour $\alpha = 1$, $\alpha = 2$.

640.23

Soit f et g deux fonctions continues sur \mathbb{R}_+ . On définit :

$$f \star g : x \mapsto \int_0^x f(x-t)g(t) dt$$

Montrer que $g \star f = f \star g$.

640.24

Pour $n \ge 2$, on pose :

$$w_n = \int_{n-1}^n \frac{1}{t} \, \mathrm{d}t \, - \frac{1}{n}$$

(a) Écrire w_n sous la forme d'une seule intégrale sur [n-1, n], puis montrer, par exemple à l'aide d'une intégration par parties, que :

$$w_n = \int_{n-1}^n \frac{t - (n-1)}{t^2} \, \mathrm{d}t$$

(b) En déduire que :

$$w_n = \frac{1}{2n^2} + \int_{n-1}^{n} \frac{(t - (n-1))^2}{t^3} dt$$

puis que :

$$w_n = \frac{1}{2n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

- (c) En déduire que $\sum_{n\geqslant 2} w_n$ converge. On note σ sa somme.
- (d) Montrer qu'il existe un réel M tel qu'à partir d'un rang n_0 , on ait :

$$\left| w_n - \frac{1}{2n^2} \right| \leqslant \frac{M}{n^3}$$

En déduire que, pour $n \ge n_0$:

$$\left| \sum_{k=n+1}^{+\infty} \left(w_k - \frac{1}{2k^2} \right) \right| \leqslant \frac{M}{3n^2}$$

(e) Montrer que:

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{n \to +\infty}{\sim} \frac{1}{n}$$

(f) Conclure de tout ce qui précède l'existence d'une constante γ telle que :

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o(\frac{1}{n})$$

640.25

Pour x > 0, on pose :

$$F(x) = \int_{\frac{1}{x}}^{x} \frac{t}{1 + t + t^2 + t^3} dt$$

- (a) Montrer que F est définie et de classe \mathcal{C}^1 sur $]0, +\infty[$.
- (b) Calculer F'(x) et en déduire une expression simple de F(x), pour tout x > 0.

640.26

Soit f définie sur \mathbb{R}^* par :

$$f(x) = \int_{x}^{2x} \frac{e^{-t^2}}{t} dt$$

- (a) Montrer que f est bien définie sur \mathbb{R}^* , et étudier sa parité.
- (b) Déterminer la limite de f en 0.

On prolonge f par continuité en 0 à l'aide de la valeur obtenue.

- (c) Montrer que f est dérivable sur \mathbb{R} .
- (d) Étudier la limite de f en $+\infty$.

Pour $x \in]0,1[$, on pose :

$$F(x) = \int_{x}^{x^2} \frac{1}{\ln t} \, \mathrm{d}t$$

et on pose $F(1) = \ln 2$.

- (a) Montrer que F est de classe C^1 sur]0,1[. Pour $x \in]0,1[$, préciser le signe de F'(x) et celui de F(x).
- (b) Montrer que, pour tout $t \in [\frac{1}{2}, 1[:$

$$0 \leqslant \frac{t-1}{t \ln(t)} \leqslant \frac{1}{t}$$

En déduire que $\int_x^{x^2} \frac{t-1}{t \ln(t)} dt \xrightarrow[x \le 1]{} 0.$

- (c) Calculer, pour $x \in]0,1[,\int_{x}^{x^2} \frac{1}{t \ln(t)} dt.$
- (d) Montrer que F est continue en 1.
- (e) Est-ce que F est de classe C^1 sur]0,1]?

Étudier la convergence et déterminer la limite éventuelle de la suite de terme général :

$$v_n = \frac{1}{n} \sum_{k=0}^{n-1} \sqrt{1 - \frac{k}{n}}$$

640.29

Déterminer les limites pour $n \to +\infty$ de :

(a)
$$\sum_{k=1}^{n} \frac{1}{n+k}$$

$$\text{(b)} \sum_{k=n+1}^{2n} \frac{n}{k^2}$$

(c)
$$\frac{1}{n} \sqrt[n]{(n+1)(n+2)\dots(2n)}$$

640.30

Montrer que, pour tout $x \in \left[0, \frac{\pi}{2}\right]$:

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$