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Dans tout le chapitre, et sauf mention contraire, E, F, G désignent des espaces vectoriels réels de dimension
finie.

1 |De quoi parle-t-on?

1.1 Des fonctions entre espaces vectoriels normés

On peut s’intéresser a des fonctions :
fiACE — F
et se poser la question de la continuité de f.

Exemple. [ : M — est une fonction M,,(R) — R, définie sur M, (R) ~ {0}.

tr(MTM)
1

Exemple. u : f— / cos(f(t)) dt est une fonction C°([0,1],R) — R.
0

Définition. Soit f : E — F définie sur A.

e Soit a € Aet be F. On dit que f(z) — b lorsque :
r—a
Ve>0,In>0,Ve €A |lz—allg<n = ||f(z)-Db|lr<e

e Soit a € A. On dit que f est continue en a lorsque :

f(@) — f(a)

Tr—ra
e f est continue sur A lorsqu’elle est continue en tout point de A.

e Soit @ € A~ A un point adhérent de A ot f n’est pas définie. On dit que f se prolonge par continuité
en a si f admet une limite b en a. La fonction prolongée est :

f:xl—>{f($) size A

b siz=a
Elle est continue en a.

Remarque. La continuité peut étre établie « par opérations algébriques » sur des fonctions que 'on sait continues.

1.2 Des fonctions entre espaces vectoriels normés automatiquement continues

Proposition.
e SifeL(E,F) et E de dimension finie, alors f est continue.

o En particulier, si B = (eq,...,e,) est une base de E, les applications : m; : =+ x;, ou (z1,...,T,) est le
n-uplet des coordonnées de z dans B, sont continues.

e Si f est multilinéaire sur un produit d’espaces normés de dimension finie, alors f est continue.

e Si f est polynomiale sur un espace normé de dimension finie, alors f est continue.

1.3 Des fonctions de plusieurs variables

Remarque. Fréquemment, on étudie des fonctions :

fiR" - RP
(T1,...yxn) — (fl(azl,...,xn),...,fp(xl,...,mn))

La continuité de f est équivalente a la continuité de fi,..., fp. On peut donc se contenter d’étudier les fonctions
numériques de plusieurs variables.
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Remarque. La compréhension de la continuité pour les fonctions de deux variables est indispensable pour I’étude des
fonctions de n variables.

Proposition. Les applications :
RZ — R et RZ — R
(,y) = = (z,y) = y
sont continues.

Exemple. Etudier la continuité de :

(x,y) — Arctan (f) In(z? + %)
Y

sur R x R*.

Techniques d’étude de la continuité des fonctions de deux variables

Montrer la continuité « par opérations », sauf éventuellement en un point

Exemple. Montrer que la fonction :

fi(zy) = w si (x,y) # (0,0)
0 si (a,y) = (0,0)

est continue sur R? \ {(0,0)}.

Montrer la non continuité en un point particulier

Exemple. Etudier la continuité en (0,0) de la fonction :
22 — o2
f(wy) = 2® + 92
0 st (2,y) = (0,0)

Exemple. Etudier la continuité en (0,0) de la fonction :

Yy

—— s (x, 0,0
gt (wy) = g2ty oz
0 st (2,9) = (0,0)
Exemple. Etudier la continuité en (0,0) de la fonction :
o (z,y) £ (0,0
h: (z,y) — < 22+ 9t LAY ’
0 st (2,9) = (0,0)

Montrer la continuité en un point particulier, prolonger une fonction par continuité

Exemple. Etudier la continuité en (0,0) de la fonction :

S — si (x, 0,0
IR by (z,y) # (0,0)
0 si (‘Tay) = (070)
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Exemple. Prolonger par continuité en (0,0) la fonction :

g ¢ (z,y) = ayln(z® +y?)

Exemple. Montrer que la fonction :

est continue en (0, 0).

Exemple. Montrer que la fonction :

5
x
ki (@y)m Arctan(z? + y*)

se prolonge en une fonction continue sur R?.

Continuité sous le signe [

Théoréme.

Soit h : X x I — K, ou X C F est une partie d’'un espace normé de dimension finie.

Si:
o Pour tout t € I, z — h(z,t) est continue sur X ;
o Pour tout z € X, t — h(x,t) est continue par morceaux sur I ;
e h satisfait ’hypothése de domination : il existe ¢ telle que :
|h(z,t)] < p(t) VY(z,t) e X x T
ol p(t) est intégrable sur I, indépendante de z.

Alors :

o friaxr /h(x,t) dt est définie et continue sur X.
I

Remarque. II s’agit d’une simple adaptation du théoréme connu pour la variable réelle au cas d’une variable dans un
espace vectoriel normé de dimension finie.

Adaptation pour domination locale. Soit h : X x I — K, ou X C F est une partie d'un espace normé de
dimension finie. Soit a € X.
Si:

e Pour tout ¢t € I, x — h(z,t) est continue sur X ;
e Pour tout z € X, t — h(z,t) est continue par morceaux sur [ ;
o h satisfait '’hypothése de domination locale : il existe V' voisinage relatif de a dans X, et ¢ telle que :
|h(z,t)| < p(t) Y(z,t) eV xI
ol (t) est intégrable sur I, indépendante de x.

Alors :

o friaxr /h(m, t) dt est définie sur V' et continue en a.
I
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4 \Suites et séries de fonctions \

Rappel des théorémes.

Les fonctions considérées sont A C E — F ou E et F sont des espaces normés de dimension finie.

e Si (fn)n converge uniformément vers f sur A ou sur tout compact de A (resp. au voisinage de a)
et si les f,, sont continues sur A (resp. en a), alors f est continue sur A (resp. en a).

e Si Z fn converge uniformément sur A ou sur tout compact de A (resp. au voisinage de a) et si les
+oo
fn sont continues sur A (resp. en a), alors S = Z fn est continue sur A (resp. en a).
n=0

Exemple. Montrer que :

—+oo . n
(e S (-1
n=0 :

est continue sur R2.
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'Exercices

GNP 33.1

On pose : Y (z,y) € R2\ {(0,0)}, f (z,y) = \/%TZJQ et f(0,0) = 0.

1. Démontrer que f est continue sur R2.

Grp 52.12

Soit a € R.
On considére I’application définie sur R? par

y4

flz,y) = 22 + 9% —xy
a si (z,y) = (0,0).

1
1. Prouver que : V(x,y) € R%, 2% +y? —ay > §(x2 +9?).

2. (a) Justifier que le domaine de définition de f est bien R?.

(b) Déterminer o pour que f soit continue sur R

1. Soit f une fonction de R? dans R.

GNp 57.1

(a) Donner, en utilisant des quantificateurs, la définition de la conti-
nuité de f en (0,0).

2. On consideére I'application définie sur R? par
22

Jay)={ gz S0 #00

0 si(z,y) = (0,0)

(a) Montrer que f est continue sur R%.

Peut-on prolonger par continuité en (0,0) les fonctions définies par :

zy
@ &
0)
sin(x) sh(y)
zy
sin(x) — sh(y)
(d) sh(z) — sin(y)

()

Peut-on prolonger par continuité en (0,0) les fonctions définies par :

(a) v
z? + zy + y?
Ty
x? —xy +y?
23y
xt + yb
xyt
Z‘4+y6
e — 1
e’ —1

Soit a,b > 0. Etudier la limite, pour (z,y) — (1,1), de :

zoyb — 1
zy — 1

n
(=
N
(-]
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Petits problemes d’entrainement

Etudier la continuité sur R? de :
2 .

2 siy<lal

[ (zy) = { . D

x* sty > |z

+oo
On donne : / e dz = /7.

—0o0

On définit, pour tout (z,t) € R x R% :

1
I(x,t) = e/

et, pour f : R — R continue et bornée, on définit, pour x,t réels :

“+oo

Kf(l’,t): /700
f(z) sit=0

fWl(z —y,t)dy sit>0

(a) Justifier 'existence de K f, et démontrer :
V(z,t) € R x RY,

1 [t 2
Kf(x,t)= ﬁ/_ f(z+vVat)e™ do

(b) Montrer que K f est continue sur R x Ry.

n
(=
N
(-]
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