

1 Exercices de niveau 1

908.1

cc-INP

On s'intéresse à l'équation différentielle :

$$(x-1)y'' - xy' + y = 0 (E)$$

- (a) Observer qu'il existe deux solutions très simples solutions de (E) sur \mathbb{R} .
- (b) Résoudre (E) sur $]-\infty, 1[$ et sur $]1, +\infty[$.
- (c) Déterminer les solutions de (E) définies sur \mathbb{R} .
- (d) Soit $\alpha, \beta \in \mathbb{R}$.

À quelle condition existe-t-il une solution définie sur \mathbb{R} , vérifiant la condition initiale $\begin{cases} y(1) = \alpha \\ y'(1) = \beta \end{cases}$?

908.2

Mines-Télécom

Résoudre sur $]0,\pi[$ l'équation différentielle :

$$y'' + y = \cot(x)$$

908.3

cc-INP

On pose \mathcal{S} l'ensemble des fonctions \mathcal{C}^2 qui vérifient y''(t)+q(t)y(t)=0 avec q une fonction T-périodique. Soit $y_1,\ y_2$ dans \mathcal{S} telles que $y_1(0)=1,\ y_1'(0)=0,\ y_2(0)=0,\ y_2'(0)=1$. On admet que $\mathcal{B}=(y_1,y_2)$ est une base de \mathcal{S} .

- (a) Trouver \mathcal{S} dans le cas où q est la fonction constante égale à 1. Montrer que $\mathcal{S} \subset \mathcal{B}(\mathbb{R},\mathbb{R}) = \text{ens. des}$ fonctions bornées de \mathbb{R} dans \mathbb{R} .
- (b) Pour y dans S, on pose $\forall t \in \mathbb{R}, f(y)(t) = y(t+T)$.
 - b
1. Montrer que $f(y) \in \mathcal{S}$, puis que f est un endomorphisme de \mathcal{S} .
 - b2. Montrer que $Mat_{\mathcal{B}}(f) = A = \begin{pmatrix} y_1(T) & y_2(T) \\ y_1'(T) & y_2'(T) \end{pmatrix}$
- (c) c1. On pose $\forall t \in \mathbb{R}, \ W(t) = y_1(t)y_2'(t) y_1'(t)y_2(t)$. Montrer que W est constante égale à 1.
 - c2. Montrer que $\chi_A(X) = X^2 \operatorname{tr}(A)X + 1$.
- (d) On suppose maintenant que $|\operatorname{tr}(A)| < 2$. Montrer que A a deux valeurs propres complexes conjuguées de module 1. Montrer que $S \subset \mathcal{B}(\mathbb{R}, \mathbb{R})$.
- (e) On suppose $|\operatorname{tr}(A)| = 2$. Montrer que \mathcal{S} possède des solutions bornées.

2 Exercices de niveau 2

908.4

Mines-Ponts

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note \mathcal{E}_A l'équation différentielle d'inconnue $Y \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_{n1}(\mathbb{C}))$:

$$Y' = AY$$

Démontrer que toutes les solutions sur \mathbb{R} de \mathcal{E}_A sont bornées si et seulement si A est diagonalisable et $\operatorname{Sp}(A) \subset i\mathbb{R}$.

908.5

Mines-Ponts

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note \mathcal{E}_A l'équation différentielle d'inconnue $Y \in \mathcal{C}^1(\mathbb{R}, \mathcal{M}_{n1}(\mathbb{C}))$:

$$Y' = AY$$

Que peut-on dire de A si toutes les solutions sur \mathbb{R} de \mathcal{E}_A sont 1-périodiques?

908.6

Centrale

Soit $q:\mathbb{R}_+\to\mathbb{R}_-^*$ une fonction continue et strictement négative. On s'intéresse aux solutions sur \mathbb{R}_+ de l'équation différentielle :

$$y'' + qy = 0 \quad (\mathcal{E}_q)$$

(a) Énoncer le théorème de Cauchy-linéaire appliqué à cette équation différentielle.

On note y_1 la solution sur \mathbb{R}_+ de (\mathcal{E}_q) vérifiant y(0) = y'(0) = 1.

- (b) Démontrer que la fonction y_1 est strictement positive, strictement croissante et convexe sur \mathbb{R}_+ .
- (c) Démontrer que la fonction $\frac{1}{y_1^2}$ est intégrable sur \mathbb{R}_+ .
- (d) Démontrer que la fonction définie par :

$$y_2(x) = y_1(x) \int_x^{+\infty} \frac{\mathrm{d}t}{y_1^2(t)} \qquad \forall x \geqslant 0$$

est une solution de (\mathcal{E}_q) .

- (e) Est-ce que (y_1, y_2) est un système fondamental de solutions?
- (f) Étudier les variations de y_2 . En déduire que y_2 possède une limite finie en $+\infty$.
- (g) Parmi les solutions sur \mathbb{R}_+ de (\mathcal{E}_q) , quelles sont celles qui sont bornées?
- (h) On suppose maintenant que q est intégrable sur \mathbb{R}_+ . Démontrer que $y_2'(x) \xrightarrow[x \to +\infty]{} 0$.

908.7

Mines-Ponts

On munit $\mathcal{M}_n(\mathbb{R})$ d'une norme d'algèbre $\|\cdot\|$.

(a) Démontrer que, pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$:

$$\exp(B) - \exp(A) = \int_0^1 \exp(tB)(B-1) \exp((1-t)A) dt$$

(b) On admet pour l'instant que, pour tout R > 0 et tout $X, Y \in \overline{B}(0, R)$:

$$\|\exp(X) - \exp(Y)\| \le e^R \|X - Y\|$$

Démontrer que exp est différentiable sur $\mathcal{M}_n(\mathbb{R})$ et que, pour $A, H \in \mathcal{M}_n(\mathbb{R})$:

$$d(\exp)(A)(H) = \int_0^1 \exp(tA)H \exp((1-t)A) dt$$

(c) Démontrer la propriété admise à la question précédente.

908.8

Centrale

On munit \mathbb{R}^n d'une norme $\|\cdot\|$. On considère Ω un ouvert non vide de \mathbb{R}^n , $a \in \Omega$ et $f \in \mathcal{C}^2(\Omega, \mathbb{R})$.

- (a) Rappeler la définition de « Ω est ouvert ».
- (b) Soit r > 0 tel que $B(a, r) \subset \Omega$ et $h \in \mathbb{R}^n$ tel que ||h|| < r. On définit :

$$\varphi: [0,1] \rightarrow \mathbb{R}$$

$$t \mapsto f(a+th)$$

Expliquer pourquoi φ est de classe \mathcal{C}^2 sur [0,1], et exprimer φ' et φ'' en fonction des dérivées partielles de f et des coordonnées h_1, \ldots, h_n de h.

- (c) On suppose que, pour tout $x \in B(a,r)$, $f(x) \leq f(a)$. Que vaut $\varphi'(0)$? Démontrer que $\varphi''(x) \leq 0$.
- (d) En déduire que la Hessienne :

$$H_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j}$$

est symétrique négative.

Que peut-on dire du la placien $\Delta f(a) = \sum_{j=1}^n \frac{\partial^2 f}{\partial x_j^2}(a)$ de f en a ?

(e) On suppose de plus que, pour tout $x \in \Omega$, $\Delta f(x) \geqslant f(x)$ et qu'il existe $a \in \Omega$ tel que $f(a) = \max_{x \in \Omega} f(x)$. Démontrer que $f \leqslant 0$ sur Ω .

On suppose maintenant que Ω est un ouvert borné et non vide de \mathbb{R}^n . On note $\partial\Omega$ la frontière de Ω . On considère une fonction $f:\overline{\Omega}\to\mathbb{R}$ qui vérifie les hypothèses suivantes :

(i)
$$f \in \mathcal{C}^0(\overline{\Omega}, \mathbb{R})$$

(ii)
$$f_{|\Omega} \in \mathcal{C}^2(\Omega, \mathbb{R})$$

(iii)
$$\forall x \in \Omega, \ \Delta f(x) = 0$$

On se propose de démontrer que :

$$\sup_{x \in \overline{\Omega}} f(x) = \sup_{x \in \partial\Omega} f(x)$$

- (a) Pourquoi f est-elle bornée sur $\overline{\Omega}$?
- (b) Pour tout $p \in \mathbb{N}^*$, on définit :

$$f_p: \overline{\Omega} \to \mathbb{R}$$
 $x \mapsto f(x) + \frac{1}{p} ||x||^2$

Calculer Δf_p sur Ω . En déduire que $\sup_{x \in \overline{\Omega}} f_p(x)$ ne peut pas être atteinte en un point de Ω .

(c) Conclure que : $\sup_{x \in \overline{\Omega}} f(x) = \sup_{x \in \partial \Omega} f(x)$

908.9

Mines-Ponts

(a) Rechercher les solutions développables en série entière de :

$$2xy'(x) + y(x) = 3x\varphi(x) \text{ avec } \varphi(x) = \begin{cases} \cos(x^{3/2}) & \text{si } x \geqslant 0\\ \cosh((-x)^{3/2}) & \text{sinon} \end{cases}$$

(b) Résoudre l'équation différentielle sur \mathbb{R}_+^* et tracer l'allure de ses solutions.

Examinatrice qui n'a pas envie détre la, qui ne veut pas aider et qui souffle très fort à chaque fois qu'on écrit quelque chose (juste ou faux).

908.10

Centrale 1

Soit g une fonction de \mathbb{R} dans \mathbb{R} qui tend vers 0 en $+\infty$. On considère l'équation :

$$(E): y' + 3y = g$$

(a) On admet provisoirement que

$$e^{-3x} \int_0^x g(t) e^{3t} dt \xrightarrow[x \to +\infty]{} 0$$

Montrer que, si f est solution de (E), alors $f(x) \xrightarrow[x \to +\infty]{} 0$.

- (b) Démontrer le résultat admis précédemment.
- (c) On suppose maintenant que $g(x) \xrightarrow[x \to +\infty]{} \ell \in \mathbb{R}$. Que peut-on dire de f solution de (E)?
- (d) et dautres questions.

Examinateur qui dessinait pendant mes explications.

908.11

Mines-Ponts

(a) Pour $n \in \mathbb{N}^*$, résoudre sur \mathbb{R} l'équation différentielle :

$$y'' + y' + y = \frac{\cos(nx)}{n^3}$$

- (b) Montrer que $f: x \mapsto \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^3}$ est définie et continue sur \mathbb{R} .
- (c) Résoudre sur $\mathbb R$ l'équation différentielle :

$$y'' + y' + y = \sum_{n=0}^{+\infty} \frac{\cos(nx)}{n^3}$$

908.12

Mines-Ponts

Déterminer les extremums sur \mathbb{R}^3 de $f:(x,y,z)\mapsto x^2+y^2+z^2-2xyz$.

3 Exercices de la banque CC-INP

3, 4, 31 à 33, 41, 42, 52, 56 à 58