
Algorithme min-max et élagage α - β

Quentin Fortier

January 27, 2026

https://fortierq.github.io

Algorithme min-max

L’algorithme de calcul des attracteurs demande de parcourir chaque
sommet du graphe des configurations possibles.

Il est donc beaucoup trop lent pour des jeux comme les échecs (≈ 1044

sommets) ou le go (≈ 10170) où le nombre de configurations est très
grand.

Algorithme min-max

On rappelle qu’une heuristique est une fonction qui à une configuration
associe une valeur dans R pour aider la recherche.

Exemples :

L’algorithme A∗ utilise une heuristique pour estimer la distance
entre un sommet et la destination.

La méthode de branch-and-bound utilise une heuristique pour
majorer la valeur d’une solution partielle.

Algorithme min-max

On rappelle qu’une heuristique est une fonction qui à une configuration
associe une valeur dans R pour aider la recherche.

Exemples :

L’algorithme A∗ utilise une heuristique pour estimer la distance
entre un sommet et la destination.

La méthode de branch-and-bound utilise une heuristique pour
majorer la valeur d’une solution partielle.

Algorithme min-max

L’algorithme min-max utilise une heuristique h qui estime à quel point
la configuration s est favorable à un joueur : plus h(s) est grand, plus v
est favorable au joueur 0 et inversement.
On prend en général h(s) = ∞ (h(s) = −∞) si s est gagnant pour le
joueur 0 (resp. 1).

Remarque : Aussi bien pour l’algorithme A∗ que min-max, utiliser une
heuristique permet d’accélerer la recherche, mais le résultat n’est pas
forcément optimal. Par contre, branch-and-bound donne une solution
optimale.

Algorithme min-max

L’algorithme min-max utilise une heuristique h qui estime à quel point
la configuration s est favorable à un joueur : plus h(s) est grand, plus v
est favorable au joueur 0 et inversement.
On prend en général h(s) = ∞ (h(s) = −∞) si s est gagnant pour le
joueur 0 (resp. 1).

Remarque : Aussi bien pour l’algorithme A∗ que min-max, utiliser une
heuristique permet d’accélerer la recherche, mais le résultat n’est pas
forcément optimal. Par contre, branch-and-bound donne une solution
optimale.

Algorithme min-max

Question
1 Proposer une heuristique pour le puissance 4.
2 Proposer une heuristique pour le domineering.

Algorithme min-max

On fixe une profondeur p ∈ N.
L’algorithme min-max considère, depuis la position en cours, le graphe
acyclique des positions atteignables après au plus p coups.

Exemple : graphe des positions atteignables après p = 2 coups.

Algorithme min-max

L’algorithme min-max donne une valeur à chaque sommet de l’arbre de
proche en proche :

1 Calcul de l’heuristique des sommets à profondeur p et ceux sans
successeurs.

2 Calcul de la valeur des sommets à profondeur p − 1 en prenant le
maximum (pour le joueur 0) ou le minimum (pour le joueur 1) des
valeurs des successeurs.

3 …
4 Calcul de la valeur de la racine.

Algorithme min-max

L’algorithme min-max donne une valeur à chaque sommet de l’arbre de
proche en proche :

1 Calcul de l’heuristique des sommets à profondeur p et ceux sans
successeurs.

2 Calcul de la valeur des sommets à profondeur p − 1 en prenant le
maximum (pour le joueur 0) ou le minimum (pour le joueur 1) des
valeurs des successeurs.

3 …
4 Calcul de la valeur de la racine.

Algorithme min-max

L’algorithme min-max donne une valeur à chaque sommet de l’arbre de
proche en proche :

1 Calcul de l’heuristique des sommets à profondeur p et ceux sans
successeurs.

2 Calcul de la valeur des sommets à profondeur p − 1 en prenant le
maximum (pour le joueur 0) ou le minimum (pour le joueur 1) des
valeurs des successeurs.

3 …
4 Calcul de la valeur de la racine.

Algorithme min-max

Remarques :

On peut voir l’algorithme de calcul des attracteurs comme un
algorithme min-max avec une profondeur illimité, +∞/−∞ au
lieu de true/false et min/max au lieu de ∀/∃.

Par contre, le calcul des attracteurs fonctionne même en présence
de cycles et de manière bottom-up (en partant des feuilles) alors
que min-max nécessite un graphe acyclique et fonctionne de
manière top-down.

Algorithme min-max

Joueur 0
(max)

Joueur 1
(min)

Joueur 0
(max)

Algorithme min-max

Joueur 0
(max)

Joueur 1
(min)

Joueur 0
(max)

−2 −∞ −∞ −1 −1 0 1 0 1 1

−∞ 0 1

1

Algorithme min-max

Joueur 0
(max)

Joueur 1
(min)

Joueur 0
(max)

−2 −∞ −∞ −1 −1 0 1 0 1 1

−∞ 0 1

1

Le joueur 0 choisit le coup maximisant la valeur du successeur (le
joueur 1 choisirait le coup minimisant l’heuristique).

Algorithme min-max

Question
Compléter l’arbre min-max ci-dessous où on a mis les valeurs de
l’heuristique à profondeur p. Le joueur qui joue en premier souhaite
maximiser l’heuristique.

3 -2 1 4 2 0 -3 -3 5

Algorithme min-max

2

1

3

3

1

-2 1

4

4

2

2

2 0

-3

-3

-3 -3

5

5

max

min

max

Algorithme min-max

Question
Écrire une fonction récursive minmax p j s renvoyant la valeur de la
configuration s, où j est le joueur actuel et p est la profondeur
maximum. On suppose définie une heuristique h et une fonction
successeur donnant la liste des configurations atteignables depuis une
configuration donnée.

Algorithme min-max

let rec minmax p j s =
let succ = successeurs s in
if succ = [] || p = 0 then h s
let l = List.map (minmax (p - 1) (1 - j)) succ in
else if j = 0 then max_list l
else min_list l

Remarque : On peut renvoyer un couple (valeur, coup) pour obtenir
le prochain coup à jouer.

Élagage α - β

On peut accélerer l’algorithme min-max :

En mémoïsant les configurations déjà rencontrées.

En élaguant les branches inutiles.

Élagage α - β
L’élagage α - β conserve des bornes α ≤ β (initialisées à −∞ et ∞)
encadrant la valeur de la racine, ce qui permet d’élaguer des branches
inutiles :

Si on est sur un sommet « max » et qu’on trouve une valeur
supérieure à β, on peut arrêter le parcours (toutes les valeurs
suivantes seront supérieures à β).

Si on est sur un sommet « min » et qu’on trouve une valeur
inférieure à α, on peut arrêter le parcours (toutes les valeurs
suivantes seront inférieures à α).

On met à jour α et β au cours des appels récursifs :

Si on est sur un sommet « max » et qu’on trouve une valeur v
supérieure à α, on met v dans α (la valeur qui sera renvoyée sera
au moins v).

Si on est sur un sommet « min » et qu’on trouve une valeur v
inférieure à β, on met v dans β (la valeur qui sera renvoyée sera
au plus v).

Élagage α - β
L’élagage α - β conserve des bornes α ≤ β (initialisées à −∞ et ∞)
encadrant la valeur de la racine, ce qui permet d’élaguer des branches
inutiles :

Si on est sur un sommet « max » et qu’on trouve une valeur
supérieure à β, on peut arrêter le parcours (toutes les valeurs
suivantes seront supérieures à β).

Si on est sur un sommet « min » et qu’on trouve une valeur
inférieure à α, on peut arrêter le parcours (toutes les valeurs
suivantes seront inférieures à α).

On met à jour α et β au cours des appels récursifs :

Si on est sur un sommet « max » et qu’on trouve une valeur v
supérieure à α, on met v dans α (la valeur qui sera renvoyée sera
au moins v).

Si on est sur un sommet « min » et qu’on trouve une valeur v
inférieure à β, on met v dans β (la valeur qui sera renvoyée sera
au plus v).

Élagage α - β
L’élagage α - β conserve des bornes α ≤ β (initialisées à −∞ et ∞)
encadrant la valeur de la racine, ce qui permet d’élaguer des branches
inutiles :

Si on est sur un sommet « max » et qu’on trouve une valeur
supérieure à β, on peut arrêter le parcours (toutes les valeurs
suivantes seront supérieures à β).

Si on est sur un sommet « min » et qu’on trouve une valeur
inférieure à α, on peut arrêter le parcours (toutes les valeurs
suivantes seront inférieures à α).

On met à jour α et β au cours des appels récursifs :

Si on est sur un sommet « max » et qu’on trouve une valeur v
supérieure à α, on met v dans α (la valeur qui sera renvoyée sera
au moins v).

Si on est sur un sommet « min » et qu’on trouve une valeur v
inférieure à β, on met v dans β (la valeur qui sera renvoyée sera
au plus v).

def minmax(alpha, beta, p, s, j):
succ = successeurs(s)
if p == 0 or succ == []:

return h(s)
if j == 0:

maxi = float('-inf')
for t in succ:

maxi = max(maxi, minmax(alpha, beta, p - 1, t, 1 - j))
if maxi >= beta:

return maxi
alpha = max(alpha, maxi)

return maxi
else:

mini = float('inf')
for t in succ:

mini = min(mini, minmax(alpha, beta, p - 1, t, 1 - j))
if mini <= alpha:

return mini
beta = min(beta, mini)

return mini

Élagage α - β

Exercice
Compléter l’arbre ci-dessous en utilisant l’algorithme min-max avec
élagage α - β. Préciser les sommets élagués.

1 4 -2 1 -1 5 -3 -3 5

