Algorithme min-max et élagage o - (8

Quentin Fortier

January 27, 2026

https://fortierq.github.io

Algorithme min-max

L'algorithme de calcul des attracteurs demande de parcourir chaque
sommet du graphe des configurations possibles.

Il est donc beaucoup trop lent pour des jeux comme les échecs (= 104
sommets) ou le go (=~ 10*™) oii le nombre de configurations est trés

grand.

Algorithme min-max

On rappelle qu'une heuristique est une fonction qui a une configuration
associe une valeur dans R pour aider la recherche.

Algorithme min-max

On rappelle qu'une heuristique est une fonction qui a une configuration
associe une valeur dans R pour aider la recherche.
Exemples :

o L’algorithme A* utilise une heuristique pour estimer la distance
entre un sommet et la destination.

@ La méthode de branch-and-bound utilise une heuristique pour
majorer la valeur d’une solution partielle.

Algorithme min-max

L'algorithme min-max utilise une heuristique h qui estime a quel point
la configuration s est favorable a un joueur : plus h(s) est grand, plus v
est favorable au joueur O et inversement.

On prend en général h(s) = oo (h(s) = —o0) si s est gagnant pour le

joueur O (resp. 1).

Algorithme min-max

L'algorithme min-max utilise une heuristique h qui estime a quel point
la configuration s est favorable a un joueur : plus h(s) est grand, plus v
est favorable au joueur O et inversement.

On prend en général h(s) = oo (h(s) = —o0) si s est gagnant pour le
joueur O (resp. 1).

Remarque : Aussi bien pour I'algorithme A* que min-max, utiliser une
heuristique permet d’'accélerer la recherche, mais le résultat n’est pas
forcément optimal. Par contre, branch-and-bound donne une solution
optimale.

Algorithme min-max

© Proposer une heuristique pour le puissance 4.
© Proposer une heuristique pour le domineering.

SCO

Algorithme min-max

On fixe une profondeur p € N.
L'algorithme min-max considére, depuis la position en cours, le graphe
acyclique des positions atteignables apres au plus p coups.

Exemple : graphe des positions atteignables aprés p = 2 coups.

s

g =
B
ﬁﬁ%

R, &

s

by
ﬁﬁj}»
)
=g

1]

—_

Algorithme min-max

L'algorithme min-max donne une valeur a chaque sommet de I'arbre de
proche en proche :

@ Calcul de I'heuristique des sommets a profondeur p et ceux sans
successeurs.

Algorithme min-max

L'algorithme min-max donne une valeur a chaque sommet de I'arbre de
proche en proche :

@ Calcul de I'heuristique des sommets a profondeur p et ceux sans
successeurs.

@ Calcul de la valeur des sommets a profondeur p — 1 en prenant le
maximum (pour le joueur 0) ou le minimum (pour le joueur 1) des
valeurs des successeurs.

Algorithme min-max

L'algorithme min-max donne une valeur a chaque sommet de I'arbre de
proche en proche :

@ Calcul de I'heuristique des sommets a profondeur p et ceux sans
successeurs.

@ Calcul de la valeur des sommets a profondeur p — 1 en prenant le
maximum (pour le joueur 0) ou le minimum (pour le joueur 1) des
valeurs des successeurs.

o .

@ Calcul de la valeur de la racine.

Algorithme min-max

Remarques :

@ On peut voir I'algorithme de calcul des attracteurs comme un
algorithme min-max avec une profondeur illimité, +00/ — oo au
lieu de true/false et min/max au lieu de V/3.

@ Par contre, le calcul des attracteurs fonctionne méme en présence
de cycles et de maniére bottom-up (en partant des feuilles) alors
que min-max nécessite un graphe acyclique et fonctionne de
maniére top-down.

Algorithme min-max

Joueur 0 W%

(max) C‘: }

Jouc-url %: %
i o =1 s
v S g [l W [l R R R [B
Co) B9 5T e &8 e Ml &S0 Mest MR &S

Algorithme min-max

Joueur 0

(max) C‘: } 1
Joueur 1 %: %
(min) ‘ } 00 C‘: }r 0 1

(max)

Joueur 0 M% T T T%ﬁ T%ﬁ
\

B
T

.
n==
-

Aﬂ:]:

=3

Algorithme min-max

Joueur 0 4‘(% 1
C‘: \

(max)

Joueur 1

(min)

1
T

=i
-
i

Joueur 0 M % % % #(%:
(max) | \ (\ \ C‘: e

#{
\ L[] | E3 \ \CD} =5 C%ﬂ}tr %J‘ %

-2 —00 —0o0 -1 -1 0 1 0 1 1

ﬁﬁj‘r
ﬁﬁ%

R B

Le joueur 0 choisit le coup maximisant la valeur du successeur (le
joueur 1 choisirait le coup minimisant I'heuristique).

Algorithme min-max

Compléter I'arbre min-max ci-dessous ou on a mis les valeurs de
I'heuristique a profondeur p. Le joueur qui joue en premier souhaite
maximiser |'heuristique.

Algorithme min-max

Algorithme min-max

Ecrire une fonction récursive minmax p j s renvoyant la valeur de la
configuration s, ou j est le joueur actuel et p est la profondeur
maximum. On suppose définie une heuristique h et une fonction
successeur donnant la liste des configurations atteignables depuis une
configuration donnée.

v

Algorithme min-max

let rec minmax p j s =
let succ = successeurs s in
if succ = [] || p =0 then h s
let 1 = List.map (minmax (p - 1) (1 - j)) succ in
else if j = O then max_list 1
else min_list 1

Remarque : On peut renvoyer un couple (valeur, coup) pour obtenir
le prochain coup a jouer.

Elagage a - (3

On peut accélerer I'algorithme min-max :
@ En mémoisant les configurations déja rencontrées.

o En élaguant les branches inutiles.

Elagage a - (3

L'élagage « - (3 conserve des bornes av < 3 (initialisées a —oo et o0)
encadrant la valeur de la racine, ce qui permet d'élaguer des branches
inutiles :

Elagage a - (3

L'élagage « - (3 conserve des bornes av < 3 (initialisées a —oo et o0)
encadrant la valeur de la racine, ce qui permet d'élaguer des branches
inutiles :

@ Si on est sur un sommet « max » et qu’on trouve une valeur
supérieure a (3, on peut arréter le parcours (toutes les valeurs
suivantes seront supérieures a [3).

@ Si on est sur un sommet « min » et qu'on trouve une valeur
inférieure a o, on peut arréter le parcours (toutes les valeurs
suivantes seront inférieures a «).

Elagage a - (3

L'élagage o - 3 conserve des bornes av < 3 (initialisées a —oo et 00)
encadrant la valeur de la racine, ce qui permet d'élaguer des branches
inutiles :

@ Si on est sur un sommet « max » et qu’on trouve une valeur
supérieure a (3, on peut arréter le parcours (toutes les valeurs
suivantes seront supérieures a [3).

@ Si on est sur un sommet « min » et qu'on trouve une valeur
inférieure a o, on peut arréter le parcours (toutes les valeurs
suivantes seront inférieures a «).

On met a jour « et B au cours des appels récursifs :

@ Si on est sur un sommet « max » et qu'on trouve une valeur v
supérieure a «, on met v dans « (la valeur qui sera renvoyée sera
au moins v).

@ Si on est sur un sommet « min » et qu'on trouve une valeur v
inférieure a 3, on met v dans /3 (la valeur qui sera renvoyée sera

def minmax(alpha, beta, p, s, j):
succ = successeurs(s)
if p == 0 or succ == []:
return h(s)
if § ==
maxi = float('-inf')
for t in succ:

maxi = max(maxi, minmax(alpha, beta, p - 1, t, 1 - j))
if maxi >= beta:
return maxi
alpha = max(alpha, maxi)
return maxi
else:
mini = float('inf')
for t in succ:
mini = min(mini, minmax(alpha, beta, p - 1, t, 1 - j))
if mini <= alpha:
return mini
beta = min(beta, mini)
return mini

Elagage a - (3

Compléter I'arbre ci-dessous en utilisant |'algorithme min-max avec
élagage o - 3. Préciser les sommets élagués.

