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Classification supervisée/non supervisée

Définition
Un algorithme de classification est un algorithme qui permet d’associer
à chaque donnée une classe (une espèce de fleur, un chiffre...)

Il y a deux types d’algorithmes de classification :

Classification supervisée : on connaît les classes de certaines
données (données d’entraînement) qui permettent de prédire la
classe d’une nouvelle donnée.
Exemples : k plus proches voisins, ID3.

Classification non supervisée : Il n’y a pas de donnée
d’entraînement et l’ensemble des classes possibles n’est pas connu
à l’avance.
Exemples : k-moyennes, classification hiérarchique ascendante.
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Algorithme des k-moyennes : Principe général

Exemple : il semble y avoir k = 3 classes de données parmi ces points.



Algorithme des k-moyennes : Principe général

Définition
Le centre (ou : isobarycentre) d’un ensemble de vecteurs x1, . . . , xn est
le vecteur

x =
1
n

n∑
i=1

xi



Algorithme des k-moyennes : Principe général

Soit X un ensemble de données et un entier k.

Inertie
On veut trouver une partition P de X en k sous-ensembles X1, . . . ,Xk
(classes ou clusters) minimisant l’inertie :

I (P) =

k∑
i=1

∑
x∈Xi

d(x,Xi)
2

Plus l’inertie est petite, plus les données sont proches du centre de leur
classe et plus le partitionnement est bon.



Algorithme des k-moyennes : Principe général

Algorithme des k-moyennes

Entrée : Des données X , un entier k
Sortie : Une partition de X en k classes

Soient c1, ..., ck des vecteurs (centres) choisis aléatoirement
Tant que les centres ont changé :

Associer chaque donnée x à la classe Xi telle que d(x, ci)
soit minimum

Recalculer les centres des classes ci = Xi

Renvoyer X1, . . . ,Xk



Algorithme des k-moyennes : Principe général

On peut choisir les centres initiaux aléatoirement dans Rp ou
parmi X .

k est le nombre de classes dans l’algorithme des k-moyennes alors
que c’est le nombre de voisins dans l’algorithme des k plus proches
voisins.

Le problème de décision consistant à déterminer s’il existe une
partition d’inertie inférieure à un seuil est NP-complet.



Algorithme des k-moyennes : Exemple
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Algorithme des k-moyennes : Terminaison

Théorème (HP)
L’algorithme des k-moyennes termine (pas de boucle infinie).

Preuve :

Il existe un nombre fini de partitions de X en k classes, donc l’inertie I
ne peut prendre qu’un nombre fini de valeurs. De plus, I diminuant
strictement à chaque itération (c’est un variant) :

Réassigner x de Xi à Xj si d(x, ci) > d(x, cj) fait diminuer I .

Recalculer les centres des classes fait diminuer I car
f : y 7−→

∑
x∈X

d(x, y)2 est minimum pour y = X .
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Algorithme des k-moyennes : Choisir k

Question
Comment choisir le nombre k de classes ?

On peut calculer l’inertie obtenue pour différentes valeurs de k.
Cependant, plus k est grand, plus l’inertie diminue jusqu’à valoir 0 si k
est égal au nombre de données (ce qui n’a aucun intérêt).
On choisit donc la plus grande valeur de k pour laquelle l’inertie
diminue de façon significative.
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Algorithme des k-moyennes : Choisir k

Méthode du coude (elbow method) : On choisit la plus grande valeur
de k pour laquelle l’inertie diminue de façon significative.

On choisit k = 3 ou k = 4.



Algorithme des k-moyennes : Non optimalité

L’algorithme des k-moyennes converge toujours vers un minimum local,
mais pas forcément vers un minimum global de l’inertie.

Question
Donner un exemple d’exécution de l’algorithme des k-moyennes qui ne
donne pas une partition d’inertie minimum.



Algorithme des k-moyennes : Classification de nouvelles
données

On peut utiliser l’algorithme des k-moyennes pour classifier une
nouvelle donnée x : on associe x à la classe dont le centre est le plus
proche de x.



Algorithme des k-moyennes : Limites
L’algorithme des k-moyennes ne marche que sur des données
linéairement séparables (pouvant être séparées par un hyperplan).



Algorithme des k-moyennes : Interprétations

Les centres obtenus à la fin de l’algorithme donnent des informations
sur les constituants des classes.

Centres obtenus avec k = 10 sur des chiffres
manuscrits



Algorithme des k-moyennes : Interprétations

Il est également intéressant de regarder l’équation des frontières de
décision, pour savoir quels sont les attributs qui permettent de
discriminer les données.

Si par exemple l’équation de la frontière de décision entre les classes 1
et 2 est ax + by = 0 avec a � b, alors l’attribut x est plus discriminant
que y pour pouvoir distinguer les classes 1 et 2.



Application à la compression d’images

Une image est souvent représentée par une matrice dont chaque
élément (pixel) est un triplet de valeurs entre 0 et 255 (rouge, vert,
bleu).

Question
Combien y a t-il de couleurs différentes possibles ?



Application à la compression d’images

Une image est souvent représentée par une matrice dont chaque
élément (pixel) est un triplet de valeurs entre 0 et 255 (rouge, vert,
bleu).

Question
Combien y a t-il de couleurs différentes possibles ?



Application à la compression d’images

On peut souhaiter limiter le nombre de couleurs différentes :

Sur un écran avec un nombre plus limité de couleurs (console...)

Pour diminuer la taille de l’image : si on utilise k couleurs, on peut
utiliser stocker un entier entre 1 et k pour chaque pixel au lieu de
trois entiers entre 0 et 255.



Application à la compression d’images

On applique l’algorithme des k-moyennes sur les pixels pour obtenir k
couleurs différentes (ici k = 8) et on remplace chaque pixel par la
couleur la plus proche.



Classification hiérarchique ascendante (CHA)

Classification hiérarchique ascendante

Entrée : Des données X
Sortie : Une partition de X en classes

Mettre chaque x ∈ X dans une classe différente
Tant que nécessaire :

Fusionner les deux classes les plus proches
Renvoyer Les classes obtenues



Classification hiérarchique ascendante (CHA)

On peut choisir d’arrêter l’algorithme à un certain nombre de classes ou
quand la distance minimum entre deux classes est supérieure à un
certain seuil.

Exemples de distances entre classes A et B :

Distance minimum : min
a∈A,b∈B

d(a, b).

Distance maximum : max
a∈A,b∈B

d(a, b).

Distance moyenne : 1
|A||B|

∑
a∈A,b∈B

d(a, b).

...
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