Dans ce cours, G = (S, A) est un graphe non-orienté, n = |S| et p = |A|.

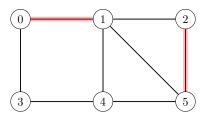
Couplage Ι

Définition: Couplage

• Un couplage de G est un ensemble d'arêtes $M \subset A$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M:

$$\forall e_1, e_2 \in M, \ e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

• Un sommet $v \in S$ est couvert par M s'il appartient à une arête de M. Sinon, v est libre pour M.



Un couplage dans un graphe

Exercice 1. Écrire une fonction est_couplage : int array array -> (int*int) list forme un couplage d'un graphe.	st -> bool déterminant si un ensemble d'arêtes

Définition: Couplage maximum, parfait

Soit M un couplage de G.

- La taille |M| de M est son nombre d'arêtes.
- $\bullet \,\,\, M$ est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage parfait si tout sommet de G appartient à une arête de M.

Remarque : en général, il n'y a pas unicité d'un couplage maximum ni d'un couplage parfait.
Exercice 2. M est un couplage maximal s'il n'existe pas de couplage M' tel que $M \subsetneq M'$.
1. Quelle(s) implication(s) a t-on entre couplage maximum et couplage maximal ?
2. Donner un algorithme simple permettant d'obtenir un couplage maximal.

II Chemin augmentant

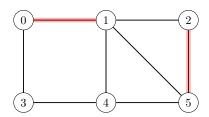
Définition: Chemin augmentant

Soit M un couplage de G.

- Un chemin est élémentaire s'il ne passe pas deux fois par le même sommet.
- Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $A \setminus M$.
- Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

Remarque : un chemin augmentant contient un nombre pair de sommets et un nombre impair d'arêtes.

Exemple : 3-0-1-2-5-4 est un chemin M-augmentant pour le couplage ci-dessous.



Définition : Différence symétrique

Si A et B sont des ensembles, $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

On a aussi $A\Delta B = A \cup B \setminus (A \cap B)$. C'est l'ensemble des éléments appartenant à A ou B, mais pas aux deux.

Théorème

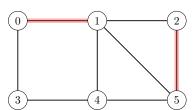
Soit M un couplage de G et P un chemin M-augmentant dans G. Alors $M\Delta P$ est un couplage de G.

<u>Preuve</u>:

Remarque : $M\Delta P$ revient à échanger dans P les arêtes de M et les arêtes n'appartenant pas à M. Comme P est de taille impaire, on a donc $|M\Delta P| = |M| + 1$.

Exercice 3.

Dessiner $M\Delta P$ pour le couplage ci-dessous et le chemin P=3-0-1-4.



Théorème

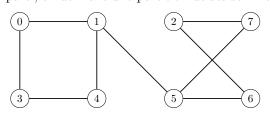
M est un couplage maximum de G si et seulement s'il n'existe pas de chemin M-augmentant dans G.

Preuve:

On en déduit l'algorithme su	divant:				
-	Couplage maximum par chemin augmentant				
	Entrée : Graphe $G = (S, A)$ Sortie : Couplage maximum M de G				
	$M \leftarrow \emptyset$				
Tant que il existe un chemin M -augmentant P dans G : $ \sqcup M \leftarrow M\Delta P $					
	Renvoyer M				
III Graphe bipar	rti				
On se restreint aux graphes	bipartis dans lesquels il est plus facile de trouver un chemin augmentant.				
Définition : Graphe	biparti				
Un graphe $G = (S, A)$ est biparti s'il existe une partition $S = X \sqcup Y$ telle que toute arête de A a une extrémité dans X et une extrémité dans Y .					

Exercice 4.

Montrer que le graphe ci-dessous est biparti, en donnant une partition de ses sommets.



${\bf D\'efinition: Coloration}$

On appelle k-coloration de G une fonction $c: S \longrightarrow \{1, 2, \dots, k\}$ telle que pour toute arête $\{u, v\} \in A$, on a $c(u) \neq c(v)$.

Théorème

Les propositions suivantes sont équivalentes :

- G est biparti.
- ullet G admet une 2-coloration.
- G n'a pas de cycle de longueur impair.

$\underline{\text{Preuve}}$:			

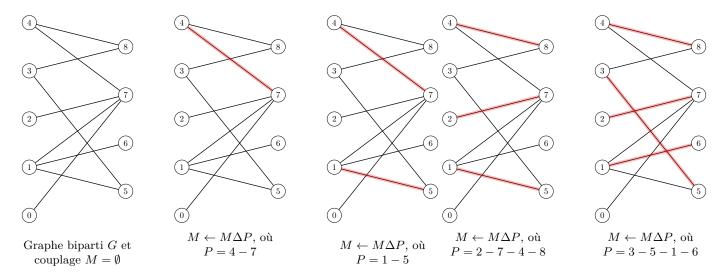
Exercice 5. Écrire une fonction est_biparti : int list array -> bool pour déterminer si un graphe est biparti, en complexité linéaire.

Pour trouver un chemin M-augmentant dans un graphe biparti G:

- 1. Partir d'un sommet libre.
- 2. Se déplacer en alternant entre des arêtes de M et des arêtes de $G \setminus M$, sans revenir sur un sommet visité (avec un parcours de graphe).
- 3. Si on arrive à un sommet libre alors on a trouvé un chemin M-augmentant.

Remarque : cette méthode est inefficace pour un graphe quelconque car dans un DFS depuis s, il faudrait distinguer deux chemins vers un sommet u (suivant que la dernière arête appartienne à M ou pas), ce qui donnerait 2^n chemins à considérer au total. Ce problème ne peut pas arriver dans un graphe biparti car il n'y a pas de cycle de longueur impaire.

Exemple de recherche d'un couplage maximum par chemin augmentant dans un graphe biparti :



Complexité de l'algorithme de couplage maximum par chemin augmentant dans un graphe biparti :

- Chaque recherche d'un chemin M-augmentant se fait par DFS en O(n+p).
- Il y a au plus p d'itération du « Tant que », car on ajoute une arête au couplage à chaque itération et qu'un couplage est de taille au plus p.

D'où une complexité totale O(p(n+p)).