Dans ce cours, on veut montrer le théorème de Kleene : un langage est régulier si et seulement s'il est reconnaissable.

I Régulier \implies reconnaissable

I.1 Langage linéaire

Définition: Expression régulière linéaire

Une expression régulière est linéaire si chaque lettre apparaît au plus une fois.

Exemple : ba|a n'est pas linéaire mais a^*b est linéaire.

Définition : Linéarisation

Soit e une expression régulière sur un alphabet Σ .

Soit k le nombre de lettres (avec multiplicité) apparaissant dans e.

Soit Σ' un alphabet de taille k.

Linéariser e consiste à remplacer chaque occurrence de lettre apparaissant dans e par une lettre différente de Σ' .

Exemple : soit $e = \varepsilon |b(a|bb)^*b$. En prenant $\Sigma' = \{c_0, c_1, c_2, c_3, c_4\}$, on peut linéariser e en $e' = \varepsilon |c_0(c_1|c_2c_3)^*c_4$.

I.2 Langage local

Définition: Linéarisation

Soit L un langage. On définit :

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset\}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)

Exercice 1.

Donner P(L), S(L), F(L) pour $L = a^*b(ab)^*c$.

Définition: Langage local

Un langage L est local si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Définition équivalente :

Définition: Langage local

Un langage L est local si :

$$L \setminus \{\varepsilon\} = P(L)\Sigma^* \cap \Sigma^* S(L) \setminus \Sigma^* N(L)\Sigma^*$$

où
$$N(L) = \Sigma^2 \backslash F(L)$$
.

Théorème

Soit L un langage. Si L est local alors L est reconnaissable.

Preuve:

Exercice 2. Dire si les langages suivants se	ont locaux :	
1. $L_1 = a^*$		3. $L_3 = a^* (ab)^*$
2. $L_2 = (ab)^*$		4. $L_4 = a^*(ab)^*$
Théorème Soient Le et Le des langages	locaux sur des alphabets disjoin	ats Σ_{*} at Σ_{*} Alors.
• $L_1 \cup L_2$ est local sur Σ • L_1L_2 est local sur $\Sigma_1 \cup$	$\Sigma_1 \cup \Sigma_2$	nts 21 et 22. Alors .
• L_1^* est local sur Σ_1		
<u>Preuve</u> :		
<u>Attention</u> : Comme vu précéden	nment, $L_1 = a^*$ et $L_2 = (ab)^*$ so	nt locaux mais pas $L_3 = L_1 \cup L_2$.
On en déduit :		
Théorème		
Tout langage linéaire est loca	al.	
Preuve:		
I.3 Automate local		
Définition : Langage lo		og tunnsitions (timestées non une même lettre chautissent en
même état :		es transitions étiquetées par une même lettre aboutissent au
	$(q_1, a, q_2) \in E \land (q_3, a,$	$q_4) \in E \implies q_2 = q_4$
Théorème		
Tout langage local L est reco	onnu par un automate local.	

 $\underline{\text{Preuve}}$:

Exercice 3.

Construire un automate local reconnaissant $e = a(a|b)^*$.

I.4 Algorithme de Berry-Sethi \heartsuit

Algorithme de Berry-Sethi

Entrée : Une expression régulière e.

Sortie : Un automate reconnaissant e, appelé automate de Glushkov.

Linéariser e en e', en remplaçant chaque lettre a de e par une nouvelle lettre $\varphi(a)$.

Calculer P(L(e')), S(L(e')), F(L(e')).

Construire un automate local A reconnaissant L(e').

Renvoyer A dans lequel on a remplacé chaque étiquette a par $\varphi^{-1}(a)$.

Exercice 4.

Appliquer l'algorithme de Berry-Sethi à l'expression régulière $e = a(a|b)^*$.

I.5 ε -transitions

On peut généraliser la notion d'automate en autorisant des ε -transitions (transition étiquetée par ε).

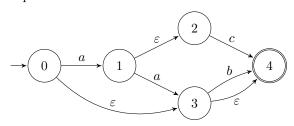
Remarque : un automate avec ε -transitions n'est pas déterministe.

Théorème

Tout automate avec ε -transitions est équivalent à un automate sans ε -transition.

<u>Preuve</u>:

Donner un automate sans ε -transition équivalent à l'automate suivant :



I.6 Autre méthode : automate de Thompson (HP)

La construction de Thompson est une alternative à l'algorithme de Berry-Sethi pour obtenir un automate à partir d'une expression régulière (et donc prouver régulier \implies reconnaissable).

On construit récursivement l'automate de Thompson T(e) reconnaissant une expression régulière e:

- Cas de base :
- $T(e_1e_2)$:
- $T(e_1|e_2)$:
- $T(e^*)$:

Exercice 6.

Construire l'automate de Thompson reconnaissant l'expression régulière $e = a(ab|b)^*$.

II Reconnaissable \implies régulier

II.1 Méthode d'élimination des états

Théorème

Soit A un automate. Il existe un automate A' équivalent à A avec :

- Un unique état initial sans transition entrante.
- Un unique état final sans transition sortante.

<u>Preuve</u>:

Dans l'algorithme suivant, on autorise n'importe quelle expression régulière et on utilise la transformation suivante qui ne change pas le langage reconnu par l'automate :

Figure 1: Élimination de l'état q

Algorithme d'élimination des états

Entrée : Un automate A.

Sortie: Une expression régulière e telle que L(e) = L(A).

Construire A' équivalent à A avec un unique état initial q_i et un unique état final q_f .

Tant que A' a au moins 3 états :

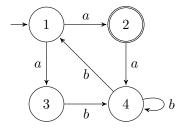
Choisir un état q différent de q_i et q_f .

Éliminer q comme sur la figure 1.

Renvoyer l'étiquette de la transition entre q_i et q_f .

Exercice 7.

Donner une expression régulière de même langage que l'automate suivant, par la méthode d'élimination des états.



III Théorème de Kleene et conséquences

Théorème : Théorème de Kleene

Un langage est régulier si et seulement s'il est reconnaissable.

Conséquences :

- On pourra choisir de raisonner avec des automates ou des expressions régulières, selon ce qui est le plus simple.
- Les langages réguliers sont stables par union, concaténation, étoile, intersection, complémentaire, différence.
- En pratique, il est utile de passer d'une expression régulière (qu'on peut rentrer facilement en ligne de commande) à un automate plus efficace algorithmiquement. La réciproque est moins utile, mais reste un résultat théorique important.