
MPI/MPI∗ Algorithme min-max et élagage α - β Q. Fortier

I Algorithme min-max
L’algorithme de calcul des attracteurs demande de parcourir chaque sommet du graphe des configurations possibles. Il est donc
beaucoup trop lent pour des jeux comme les échecs (≈ 1044 sommets) ou le go (≈ 10170) où le nombre de configurations est très
grand.

Rappel : une heuristique est une fonction qui à une configuration associe une valeur dans R pour aider la recherche.

Exemples :

• L’algorithme A∗ utilise une heuristique pour estimer la distance entre un sommet et la destination.

• La méthode branch-and-bound utilise une heuristique pour majorer la valeur d’une solution partielle.

L’algorithme min-max utilise une heuristique h qui estime à quel point la configuration s est favorable à un joueur : plus h(s)
est grand, plus v est favorable au joueur 0 et inversement.
On prend en général h(s) = ∞ (h(s) = −∞) si s est gagnant pour le joueur 0 (resp. 1).

Remarque : Aussi bien pour l’algorithme A∗ que min-max, utiliser une heuristique permet d’accélerer la recherche, mais le
résultat n’est pas forcément optimal. Par contre, branch-and-bound donne une solution optimale.

Exercice 1.

1. Proposer une heuristique pour le jeu du puissance 4.

2. Proposer une heuristique pour le domineering.

On fixe une profondeur p ∈ N. L’algorithme min-max considère, depuis la position en cours, le graphe acyclique des positions
atteignables après au plus p coups. Il donne une valeur à chaque sommet de proche en proche :

1. Calcul de l’heuristique des sommets à profondeur p et ceux sans successeurs (feuilles).

2. Calcul de la valeur des sommets à profondeur p − 1 en prenant le maximum (pour le joueur 0) ou le minimum (pour le
joueur 1) des valeurs des successeurs.

3. …

4. Calcul de la valeur de la racine.

Remarques :

• On peut voir l’algorithme de calcul des attracteurs comme un algorithme min-max avec une profondeur illimité, +∞/−∞
au lieu de true/false et min/max au lieu de ∀/∃.

• Par contre, le calcul des attracteurs fonctionne même en présence de cycles et de manière bottom-up (en partant des
feuilles) alors que min-max nécessite un graphe acyclique et fonctionne de manière top-down.

https://mpi-lamartin.github.io/mpi-info
https://fortierq.github.io


Exemple : l’heuristique est le nombre de coups possibles pour le joueur 0 moins le nombre de coups possibles pour le joueur 1.

Joueur 0
(max)

Joueur 1
(min)

Joueur 0
(max)

−2 −∞ −∞ −1 −1 0 1 0 1 1

−∞ 0 1

1

Le joueur 0 choisit le coup maximisant la valeur du successeur.

Exercice 2.
Compléter l’arbre min-max ci-dessous où on a mis les valeurs de l’heuristique à profondeur p. Le joueur qui joue en premier
souhaite maximiser l’heuristique.

3 -2 1 4 2 0 -3 -3 5

Exercice 3.
Écrire une fonction récursive minmax p j s renvoyant la valeur de la configuration s, où j est le joueur actuel et p est la
profondeur maximum. On suppose définie une heuristique h et une fonction successeur donnant la liste des configurations
atteignables depuis une configuration donnée.

Remarque : On peut renvoyer un couple (valeur, coup) pour obtenir le prochain coup à jouer.



II Élagage α - β

On peut accélerer l’algorithme min-max :

• En mémoïsant les configurations déjà rencontrées.

• En élaguant les branches inutiles.

L’élagage α - β conserve des bornes α ≤ β (initialisées à −∞ et ∞) encadrant la valeur de la racine, ce qui permet d’élaguer des
branches inutiles :

• Si on est sur un sommet « max » et qu’on trouve une valeur supérieure à β, on peut arrêter le parcours (car on est sûr de
renvoyer une valeur supérieure à β).

• Si on est sur un sommet « min » et qu’on trouve une valeur inférieure à α, on peut arrêter le parcours (car on est sûr de
renvoyer une valeur inférieure à α).

On met à jour α et β au cours des appels récursifs :

• Si on est sur un sommet « max » et qu’on trouve une valeur v supérieure à α, on met v dans α (la valeur qui sera renvoyée
sera au moins v).

• Si on est sur un sommet « min » et qu’on trouve une valeur v inférieure à β, on met v dans β (la valeur qui sera renvoyée
sera au plus v).

def minmax(alpha, beta, p, s, j):
succ = successeurs(s)
if p == 0 or succ == []:

return h(s)
if j == 0:

maxi = float('-inf')
for t in succ:

maxi = max(maxi, minmax(alpha, beta, p - 1, t, 1 - j))
if maxi >= beta:

return maxi
alpha = max(alpha, maxi)

return maxi
else:

mini = float('inf')
for t in succ:

mini = min(mini, minmax(alpha, beta, p - 1, t, 1 - j))
if mini <= alpha:

return mini
beta = min(beta, mini)

return mini

Exercice 4.
Compléter l’arbre ci-dessous en utilisant l’algorithme min-max avec élagage α - β. Préciser les sommets élagués.

1 4 -2 1 -1 5 -3 -3 5


