MPI/MPT* Algorithme min-max et élagage o - (8 Q. Fortier

I Algorithme min-max

L’algorithme de calcul des attracteurs demande de parcourir chaque sommet du graphe des configurations possibles. Il est donc
beaucoup trop lent pour des jeux comme les échecs (= 10 sommets) ou le go (~ 10170) ol le nombre de configurations est tres
grand.

Rappel : une heuristique est une fonction qui a une configuration associe une valeur dans R pour aider la recherche.
Exemples :

o L’algorithme A* utilise une heuristique pour estimer la distance entre un sommet et la destination.

e La méthode branch-and-bound utilise une heuristique pour majorer la valeur d’une solution partielle.

L’algorithme min-max utilise une heuristique h qui estime & quel point la configuration s est favorable & un joueur : plus h(s)
est grand, plus v est favorable au joueur 0 et inversement.
On prend en général h(s) = oo (h(s) = —o0) si s est gagnant pour le joueur 0 (resp. 1).

Remarque : Aussi bien pour lalgorithme A* que min-max, utiliser une heuristique permet d’accélerer la recherche, mais le
résultat n’est pas forcément optimal. Par contre, branch-and-bound donne une solution optimale.

Exercice 1.

1. Proposer une heuristique pour le jeu du puissance 4.

2. Proposer une heuristique pour le domineering.

|
N

On fixe une profondeur p € N. L’algorithme min-max considere, depuis la position en cours, le graphe acyclique des positions
atteignables apres au plus p coups. Il donne une valeur a chaque sommet de proche en proche :

1. Calcul de 'heuristique des sommets & profondeur p et ceux sans successeurs (feuilles).

2. Calcul de la valeur des sommets & profondeur p — 1 en prenant le maximum (pour le joueur 0) ou le minimum (pour le
joueur 1) des valeurs des successeurs.

3. ..
4. Calcul de la valeur de la racine.
Remarques :

e On peut voir l'algorithme de calcul des attracteurs comme un algorithme min-max avec une profondeur illimité, +o00/ — 0o
au lieu de true/false et min/max au lieu de V/3.

o Par contre, le calcul des attracteurs fonctionne méme en présence de cycles et de maniére bottom-up (en partant des
feuilles) alors que min-max nécessite un graphe acyclique et fonctionne de maniére top-down.


https://mpi-lamartin.github.io/mpi-info
https://fortierq.github.io

Exemple : I'heuristique est le nombre de coups possibles pour le joueur 0 moins le nombre de coups possibles pour le joueur 1.

Joueur 0 DC‘D 1

(max) C‘j

Joueur 1 Hles gl e |
(min) C‘D C‘j U C\DDi

Joueur 0 DD

ot

C3

il

C3

D4
|

ic=

00
|

B e B
|

|

mm
|

-

|
)
-

) = = ~CiEi=l= =
-9 —0 —0 -1 -1 0 1 0 1 1

Le joueur 0 choisit le coup maximisant la valeur du successeur.

Exercice 2.

Compléter 'arbre min-max ci-dessous ou on a mis les valeurs de I'heuristique & profondeur p. Le joueur qui joue en premier
souhaite maximiser I’heuristique.

Exercice 3.

Ecrire une fonction récursive minmax p j s renvoyant la valeur de la configuration s, ou j est le joueur actuel et p est la
profondeur maximum. On suppose définie une heuristique h et une fonction successeur donnant la liste des configurations
atteignables depuis une configuration donnée.

Remarque : On peut renvoyer un couple (valeur, coup) pour obtenir le prochain coup a jouer.




II Elagage a - (3

On peut accélerer 'algorithme min-max :
e En mémoisant les configurations déja rencontrées.
e En élaguant les branches inutiles.

L’élagage « - 8 conserve des bornes o < f3 (initialisées & —oo et 0o) encadrant la valeur de la racine, ce qui permet d’élaguer des
branches inutiles :

e Sion est sur un sommet « max » et qu’on trouve une valeur supérieure a 3, on peut arréter le parcours (car on est str de
renvoyer une valeur supérieure a f3).

o Sion est sur un sommet « min » et qu’on trouve une valeur inférieure & «, on peut arréter le parcours (car on est siir de
renvoyer une valeur inférieure & «).

On met a jour « et B au cours des appels récursifs :

e Sion est sur un sommet « max » et qu’on trouve une valeur v supérieure a «, on met v dans « (la valeur qui sera renvoyée
sera au moins v).

e Sion est sur un sommet « min » et qu’on trouve une valeur v inférieure & 8, on met v dans 8 (la valeur qui sera renvoyée
sera au plus v).

def minmax(alpha, beta, p, s, j):
succ = successeurs(s)
if p == 0 or succ == []:
return h(s)
if j ==
maxi = float('-inf')
for t in succ:
maxi = max(maxi, minmax(alpha, beta, p - 1, t, 1 - j))
if maxi >= beta:
return maxi
alpha = max(alpha, maxi)
return maxi
else:
mini = float('inf')
for t in succ:
mini = min(mini, minmax(alpha, beta, p - 1, t, 1 - j))
if mini <= alpha:
return mini
beta = min(beta, mini)
return mini

Exercice 4.
Compléter 'arbre ci-dessous en utilisant I’algorithme min-max avec élagage o - 5. Préciser les sommets élagués.




