MPI/MPT* Apprentissage non supervisé Q. Fortier

Il y a deux types d’algorithmes de classification :

o Classification supervisée : on connait les classes de certaines données (données d’entrainement) qui permettent de prédire
la classe d’une nouvelle donnée. Exemples : k plus proches voisins, ID3.

¢ Classification non supervisée : Il n’y a pas de donnée d’entrainement et 1’ensemble des classes possibles n’est pas connu a
I’avance. Exemples : k-moyennes, classification hiérarchique ascendante.

I Algorithme des k-moyennes (k-means)

On note d une distance (par exemple la distance euclidienne) et k un entier.

4‘ Définition : Centre !

Le centre (ou : isobarycentre) d’un ensemble de vecteurs X = {z1,...,2,} est le vecteur

1 n
i
_‘ Définition : Inertie !
On veut trouver une partition P de X en k sous-ensembles X7, ..., X (classes ou clusters) minimisant I'inertie :
k
I(P)=3 % dX;)’
i=1z€X;

Plus l'inertie est petite, plus les données sont proches au sein de leur classe et plus le partitionnement est bon.

‘ Algorithme des k-moyennes ‘

Entrée : Des données X, un entier k
Sortie : Une partition de X en k classes

Soient ¢y, ..., ¢ des vecteurs (centres) choisis aléatoirement
Tant que les centres ont changé :
L Associer chaque donnée z a la classe X; telle que d(z, ¢;) soit minimum

Recalculer les centres des classes ¢; = X
Renvoyer Xq,..., X}

Remarques :
e On peut choisir les centres initiaux aléatoirement dans RP ou parmi X.

e k est le nombre de classes dans ’algorithme des k-moyennes alors que c’est le nombre de voisins dans ’algorithme des &
plus proches voisins.

e Le probleme de décision consistant & déterminer s’il existe une partition d’inertie inférieure a un seuil est NP-complet.

I.1 Terminaison (HP)

4| Théoréeme

L’algorithme des k-moyennes termine (pas de boucle infinie).

Preuve : Il existe un nombre fini de partitions de X en k classes, donc l'inertie I ne peut prendre qu’un nombre fini de
valeurs. De plus, I diminuant strictement & chaque itération (c’est un variant) :

o Réassigner z de X; a X si d(z,¢;) > d(x,¢;) fait diminuer 1.

¢ Recalculer les centres des classes fait diminuer I car f:y— Z d(z,y)? est minimum pour y = X.
reX



https://mpi-lamartin.github.io/mpi-info
https://fortierq.github.io

Données que I'on souhaite classifier

Choix initial des centres
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Exemple d’exécution de I'algorithme des k-moyennes




1.2 Choisir k

On peut calculer 'inertie obtenue pour différentes valeurs de k. La méthode du coude consiste a choisir la plus grande valeur de
k pour laquelle I'inertie diminue de facon significative.
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On choisit £k = 3 ou k = 4.

I.3 Non optimalité
L’algorithme des k-moyennes converge toujours vers un minimum local, mais pas forcément vers un minimum global de l'inertie.

Exercice 1.
Donner un exemple d’exécution de 'algorithme des k-moyennes qui ne donne pas une partition d’inertie minimum.

I.4 Limites

L’algorithme des k-moyennes ne marche que sur des données linéairement séparables (pouvant étre séparées par un hyperplan).
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L’algorithme des k-moyennes ne permettrait pas de classifier correctement ces données.

I.5 Interprétations

Les centres obtenus a la fin de I'algorithme donnent des informations sur les constituants des classes.



Centres obtenus avec k = 10 sur des chiffres manuscrits

IT Classification hiérarchique ascendante (CHA)

‘ Classification hiérarchique ascendante ‘

Entrée : Des données X
Sortie : Une partition de X en classes

Mettre chaque € X dans une classe différente
Tant que nécessaire :
L Fusionner les deux classes les plus proches

Renvoyer Les classes obtenues

On peut choisir d’arréter 1'algorithme a un certain nombre de classes ou quand la distance minimum entre deux classes est
supérieure a un certain seuil.

Exemples de distances entre classes A et B :

1. Distance minimum : min d(a,b).
acA,beB

2. Distance maximum : max d(a,b).
a€A,bEB

1
3. Distance moyenne : —— Z d(a,b).

Al Bl
acAbeB
Exercice 2.
Appliquer l'algorithme de classification hiérarchique ascendante sur les données suivantes en dessinant le dendrogramme
obtenu. On utilisera la distance 1.
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