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Science des données

La science des données (data science) a pour objectif d’extraire de
l’information à partir de données brutes.

Exemples :

Données sur des fleurs : longueur et largeur des pétales et des
sépales.

Données sur des élèves : moyenne, classe...

Données sur les clients d’une banque : âge, épargne, ...
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Science des données : Représentation

Pour pouvoir avoir une notion de distance entre deux données, on
représente chaque donnée comme un vecteur de Rp.

Exemple : chaque donnée de fleur peut être représentée par un
quadruplet de R4 correspondant à la longueur et largeur des pétales et
des sépales.

Les composantes de ce vecteur sont appelées les attributs.



Science des données : Représentation

Parfois il est moins évident de représenter une donnée par un vecteur :

Variable catégorielle (non numérique : genre, couleur...) : on
utilise souvent un vecteur avec un 1 et que des 0 (one-hot vector).
Exemple : on peut représenter les classes MP2I/MPI/MPSI/MP

par des vecteurs


1
0
0
0

,


0
1
0
0

...

Image : On passe d’une matrice de pixels avec n lignes, p colonnes
à un vecteur de taille np.

Son : Transformée de Fourier discrète.
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Science des données : Représentation

On représente classiquement l’ensemble des données (donc de vecteurs
de Rp) par une matrice X dont chaque ligne est une donnée et chaque
colonne est un attribut.

OCaml Matrice Données
x.(i) ième ligne ième donnée

Array.length nombre de lignes nombre de données

x.(i).(j)
élément ligne i,

colonne j
jème attribut

de la ième donnée
Array.length x.(0) nombre de colonnes nombre d’attributs



Science des données : Distance

Pour savoir si deux données sont « proches » l’une de l’autre, on utilise
une distance sur les données, c’est-à-dire sur Rp.

Exemples :

Distance euclidienne :

d(x, y) =

√√√√ p∑
i=1

(xi − yi)2

Distance de Manhattan :

d(x, y) =
p∑

i=1
|xi − yi |



Science des données : Standardisation

Quand les attributs n’ont pas la même échelle, un attribut peut avoir
beaucoup plus d’importance qu’un autre dans les calculs de distance.

Pour que les attributs aient la même importance, on peut standardiser
les données, c’est-à-dire les modifier pour avoir une moyenne de 0 et un
écart-type de 1.

La plupart des algorithmes de science des données fonctionnent mieux
avec des données standardisées.
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Science des données : Standardisation

Théorème

Si Z est une variable aléatoire d’écart-type σ 6= 0 alors Z − E(Z)

σ
a une

espérance nulle et un écart-type égal à 1.

Exercice
Écrire une fonction
void standardiser(float** X, int n, int p) qui standardise les
données X de taille n × p.



Apprentissage supervisé
Problème d’apprentissage supervisé
• Inconnu : f : X −→ Y , où X un ensemble de données et Y un
ensemble d’étiquettes (ou classes).
• Entrée : des données d’entraînement x1, ..., xn ∈ X et leurs classes
f (x1), ..., f (xn) ∈ Y .
• Sortie : une fonction g : X −→ Y approximant f .

À partir de données d’entraînement dont on connaît la classe, on veut
prédire la classe de nouvelles données.

Suivant l’ensemble possible d’étiquettes, on parle de :

Classification : Y est fini, par exemple Y = {1, ..., k}.
Exemples : k plus proches voisins, arbre de décision, réseau de
neurones...

Régression : Y est un ensemble continu, par exemple Y = R.
Exemples : régression linéaire, modèle linéaire généralisé...
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Apprentissage supervisé

On souhaite éviter le surapprentissage (overfitting) où l’algorithme
approxime trop bien les données d’entraînement et généralise mal sur
de nouvelles données.

Le polynôme de Lagrange passe par tous les points
d’entraînement mais généralise moins bien que la

régression linéaire.



Apprentissage supervisé
Problème d’apprentissage supervisé
• Inconnu : f : X −→ Y , où X un ensemble de données et Y un
ensemble d’étiquettes (ou classes).
• Entrée : des données d’entraînement x1, ..., xn ∈ X et leurs classes
f (x1), ..., f (xn) ∈ Y .
• Sortie : une fonction g : X −→ Y approximant f .

Exemples de problèmes de classification :

Données X Classes Y f (x)
Tailles de tumeurs Maligne, Bénigne Gravité de x

Mails Spam, Non-spam Ce mail
est-il un spam ?

Images J0, 9K Chiffre représenté
sur x ?

Musiques classique,
rap, rock... Genre musical de x



Algorithme des k plus proches voisins (KNN)

Soit k ∈ N.
L’algorithme des k plus proches voisins prédit la classe d’une nouvelle
donnée x de la façon suivante :

1 Trouver les k données d’entraînement les plus proches de x (en
termes de distance).

2 Trouver la classe majoritaire c ∈ Y parmi de ces k données.
3 Prédire que x est de classe c.



Algorithme des k plus proches voisins (KNN)

Soit k ∈ N.
L’algorithme des k plus proches voisins prédit la classe d’une nouvelle
donnée x de la façon suivante :

1 Trouver les k données d’entraînement les plus proches de x (en
termes de distance).

2 Trouver la classe majoritaire c ∈ Y parmi de ces k données.

3 Prédire que x est de classe c.



Algorithme des k plus proches voisins (KNN)

Soit k ∈ N.
L’algorithme des k plus proches voisins prédit la classe d’une nouvelle
donnée x de la façon suivante :

1 Trouver les k données d’entraînement les plus proches de x (en
termes de distance).

2 Trouver la classe majoritaire c ∈ Y parmi de ces k données.
3 Prédire que x est de classe c.



Algorithme des k plus proches voisins (KNN)

Des données dont les classes (rouge ou bleues) sont connues.



Algorithme des k plus proches voisins (KNN)

x

On veut prédire la classe d’une nouvelle donnée x.



Algorithme des k plus proches voisins (KNN)

x

On trouve les k plus proches voisins.



Algorithme des k plus proches voisins (KNN)

x

On associe à x la classe majoritaire de ses plus proches voisins.



Étape 1 : Trouver les k plus proches voisins.

Question
Soit x un vecteur sous forme de tableau, X une matrice de données, k
un entier et d une fonction de distance supposée définie.
Écrire une fonction int* voisins(float* x, float** X, int k)
renvoyant un tableau des indices des k plus proches voisins de x dans X.



bool in(int* T, int n, int x) {
for(int i = 0; i < n; i++)

if(T[i] == x) return true;
return false;

}
int* voisins(float* x, float** X, int k, int n, int p) {

int* I = malloc(k * sizeof(int));
for(int i = 0; i < k; i++) { // ajout du ième minimum

int jmin = -1;
for(int j = 0; j < n; j++)

if(jmin == -1 || d(x, X[j], p) < d(x, X[jmin], p))
if(!in(I, k, j))

jmin = j;
I[i] = jmin;

}
return I;

}

Complexité : O(kn(p + k)), si d est en O(p).



Étape 1 : Trouver les k plus proches voisins.

Autres solutions :

Trier les données d’entraînement par ordre croissant de distance à
x et prendre les k premières en O(np + n log(n)).

Utiliser une file de priorité (tas min) en O(np + k log(n)).



Étape 2 : Trouver la classe majoritaire
Question
Écrire une fonction int maj(int* T, int n, int k) renvoyant en
O(n + k) l’élément le plus fréquent d’un tableau T de taille k dont les
éléments sont compris entre 0 et n − 1.

int maj(int* T, int n, int k) {
int* compte = malloc(n * sizeof(int));
for(int i = 0; i < n; i++) compte[i] = 0;
for(int i = 0; i < k; i++) compte[T[i]]++;
int c = 0;
for(int i = 1; i < n; i++)

if(compte[i] > compte[c])
c = i;

free(compte);
return c;

}

Complexité : O(n + k).
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Étape 3 : Prédire la classe de x

Exercice
Écrire une fonction
int knn(float* x, float** X, int* Y, int k, int n, int p, int nc)
qui prédit la classe de x en utilisant l’algorithme KNN, où :

x est la donnée à prédire,
X est la matrice des données d’entraînement,
Y[i] est la classe de la donnée X[i],
k est le nombre de voisins à considérer,
n est le nombre de données d’entraînement,
p est le nombre d’attributs,
nc est le nombre de classes.



Étape 3 : Prédire la classe de x

int knn(float* x, float** X, int* Y, int k, int n, int p, int nc) {
int* I = voisins(x, X, k, n, p);
int* classes = malloc(k * sizeof(int));
for(int i = 0; i < k; i++)

classes[i] = Y[I[i]];
int c = maj(classes, k, nc);
free(I);
free(classes);
return c;

}



Évaluation d’un algorithme d’apprentissage

Supposons posséder des données X avec des étiquettes Y et qu’on
veuille savoir si KNN est un bon classifieur.

Pour cela, on partitionne X en deux ensembles :

Ensemble d’entraînement Xtrain (de classes Ytrain) qu’on utilise
pour classifier une nouvelle donnée.

Ensemble de test Xtest (de classes Ytest) qu’on utilise pour évaluer
la qualité de l’algorithme (en comparant les prédictions aux vraies
classes).



Évaluation d’un algorithme d’apprentissage

Définition
La précision d’un algorithme d’apprentissage est la proportion de
données de test bien classées par rapport au nombre total de
données.
L’erreur est égale à 1 − précision.



Évaluation d’un algorithme d’apprentissage

Définition
La matrice de confusion est une matrice carrée dont les lignes et les
colonnes sont les classes possibles. La case (i, j) contient le nombre de
données de test de classe i qui ont été prédites comme appartenant à la
classe j.

Exemple : Dans la matrice suivante, on voit que toutes les données de
classe 0 ont été prédites correctement, une donnée de classe 1 a été
prédite à tord comme appartenant à la classe 2.

21 0 0
0 29 1
0 2 23


La précision est la somme des éléments diagonaux divisée par la somme
de tous les éléments.
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Évaluation d’un algorithme d’apprentissage
Question
Comment choisir la valeur de k dans l’algorithme des k plus proches
voisins ?

On peut afficher la précision en fonction de k pour choisir la valeur de k
qui donne la meilleure précision.



Évaluation d’un algorithme d’apprentissage
Question
Comment choisir la valeur de k dans l’algorithme des k plus proches
voisins ?

On peut afficher la précision en fonction de k pour choisir la valeur de k
qui donne la meilleure précision.



Évaluation d’un algorithme d’apprentissage

On peut aussi visualiser la frontière de décision (decision boundary)
permettant de voir à quelle classe est associée chaque point de l’espace
des données :



Exemple complet : classification d’iris

Exemples en Python :

Classification de fleurs

Classification de chiffres manuscrits (MNIST).

https://cpge-itc.github.io/itc2/dl/apprentissage/cours/knn/exemple/knn_iris.html
https://cpge-itc.github.io/itc2/dl/apprentissage/tp/tp_chiffres/tp_chiffres.html


Arbre k − d (k-dimensionnel)

Un arbre k − d est une structure de données permettant de calculer
plus rapidement les plus proches voisins parmi des points de Rp.

Construction de l’arbre : à la profondeur i, on divise les points de Rp

en deux parties égales (±1) en prenant comme hyperplan de division
l’axe i modulo p.
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Arbre k − d (k-dimensionnel)

Pour trouver le point le plus proche de y ∈ Rp :
1 On trouve la feuille de l’arbre correspondant à la zone contenant y.
2 On remonte l’arbre en conservant la distance minimum trouvée et

en explorant l’autre sous-arbre si nécessaire.
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Arbre k − d (k-dimensionnel)

On peut adapter cette méthode pour trouver les k plus proches voisins
parmi n points efficacement et accélerer l’algorithme des k plus proches
voisins.



Algorithme ID3

On suppose dans cette partie que les attributs et les classes sont des
booléens (0 ou 1), mais on peut généraliser l’algorithme à des attributs
et classes finies.

Définition
Un arbre de décision est un arbre binaire où :

Chaque nœud interne est associé à un attribut a et correspond à la
question : « a est-il vrai ? ».
Chaque feuille est associée à une classe.



Algorithme ID3

L’algorithme de classification supervisée ID3 comporte deux étapes :
1 Entraînement : construction gloutonne d’un arbre de décision.
2 Prédiction : classification d’une nouvelle donnée en parcourant

l’arbre.



Algorithme ID3

Définition
Si X est un ensemble de données de classes Y on définit son entropie :

H (X) = −
∑
c∈Y

p(c) log2(p(c))

où p(c) est la proportion de données de classe c dans X .

L’entropie mesure la dispersion des valeurs : plus H (X) est élevée, plus
les données de X sont dispersées dans les classes de Y . Si toutes les
données sont dans la même classe, H (X) = 0.

On peut montrer avec l’inégalité de Jensen que H (X) est maximum
lorsque les données sont uniformément réparties entre les classes.
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Exercice
Une fonction f : [0, 1] −→ R+ mesurant la surprise d’un évènement
(f (p) étant la surprise de voir un évènement avec probabilité p se
réaliser) doit raisonnablement vérifier :

1 f continue
2 f (1) = 0 (un évènement certain n’est pas surprenant)
3 Si p < q alors f (p) > f (q) (un évènement rare est plus surprenant

qu’un évènement fréquent)
4 f (pq) = f (p) + f (q) (la surprise de deux évènements indépendants

est la somme des surprises)
5 f (1/2) = 1 (normalisation)

Montrer que f (p) = − log2(p).
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On met en racine de l’arbre l’attribut qui sépare le mieux les données
d’entraînement en deux classes :

Définition
Si a est un attribut de X , on définit :

H (X |a) =
∑

v∈{0,1}

p(a = v)H (X |a = v)

où p(a = v) est la proportion de données de X pour lesquelles a = v et
X |a = v est l’ensemble des données de X pour lesquelles a = v.



Algorithme ID3

L’algorithme ID3 choisit comme racine l’attribut a qui minimise
l’entropie H (X |a) après avoir séparé les données en fonction de a.
On fixe donc l’attribut a qui contribut le plus à la dispersion des
classes.

Quand il n’y a plus d’attribut ou que toutes les données sont dans
la même classe, on crée une feuille avec la classe majoritaire.

S’il n’y a plus de données, on crée une feuille avec la classe
majoritaire des données du nœud père.
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Exemple : On considère un étudiant qui a laissé des avis (positifs ou
négatifs) sur un certains nombre de livre d’informatique. Voici les
attributs de chaque livre :

E : Le livre contient des exercices.

C : le livre contient les corrigés de ces exercices.

F : le livre est écrit en français.

O : le livre utilise OCaml.

Y : l’étudiant a laissé un avis positif.

On souhaite prédire si un nouveau livre sera apprécié ou non.

Il y a deux classes : Y = {0, 1}.
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E C F O Y
1 1 1 1 1
1 1 1 0 0
1 1 0 1 1
1 1 0 0 0
1 0 1 1 1
1 0 1 0 0
1 0 0 1 0
1 0 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0
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On calcule :

H (X |E = 1) = −3
8
log2(

3
8
)− 5

8
log2(

5
8
) ≈ 0.95

H (X |E = 0) = −1
4
log2(

1
4
)− 3

4
log2(

3
4
) ≈ 0.81

H (X |E) =
8
12

H (X |E = 1) + 4
12

H (X |E = 0) ≈ 0.9

De même, H (X |C) ≈ 0.876, H (X |F) ≈ 0.92 et H (X |O) ≈ 0.46.

On choisit donc O comme attribut de la racine de l’arbre, puis on
s’applique récursivement sur X |O = 1 et X |O = 0.
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On obtient l’arbre de décision suivant (où le fils gauche correspond à 0
et le fils droit à 1) :

O

0 C

E

F

1 0

F

0 1

1

Exercice
Selon l’algorithme ID3, quel avis obtiendrait un livre (E ,C ,F ,O) = (0,
1, 1, 1) ? (1, 0, 1, 1) ?
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Remarque : La classification par arbre de décision a tendance à
surapprendre les données d’entraînement.
L’algorithme Random Forest utilise plusieurs arbres de décision
construits sur des sous-ensembles aléatoires des données et des
attributs pour améliorer la généralisation.


