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Science des données

La science des données (data science) a pour objectif d'extraire de
I'information a partir de données brutes.



Science des données

La science des données (data science) a pour objectif d'extraire de
I'information a partir de données brutes.

Exemples :

@ Données sur des fleurs : longueur et largeur des pétales et des
sépales.

@ Données sur des éléves : moyenne, classe...

@ Données sur les clients d'une banque : age, épargne, ...



Science des données : Représentation

Pour pouvoir avoir une notion de distance entre deux données, on
représente chaque donnée comme un vecteur de R?.

Exemple : chaque donnée de fleur peut étre représentée par un
quadruplet de R* correspondant 2 la longueur et largeur des pétales et
des sépales.

Les composantes de ce vecteur sont appelées les attributs.
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@ Variable catégorielle (non numérique : genre, couleur...) : on
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@ Image : On passe d'une matrice de pixels avec n lignes, p colonnes
a un vecteur de taille np.



Science des données : Représentation

Parfois il est moins évident de représenter une donnée par un vecteur :

@ Variable catégorielle (non numérique : genre, couleur...) : on
utilise souvent un vecteur avec un 1 et que des 0 (one-hot vector).
Exemple : on peut représenter les classes MP2l/MPI/MPSI/MP

1 0

q 0 1
par des vecteurs ol |o
0 0

@ Image : On passe d'une matrice de pixels avec n lignes, p colonnes
a un vecteur de taille np.

@ Son : Transformée de Fourier discréte.



Science des données : Représentation

On représente classiquement I'ensemble des données (donc de vecteurs
de R?) par une matrice X dont chaque ligne est une donnée et chaque
colonne est un attribut.

OCaml Matrice Données
x. (1) ieme ligne iéme donnée
Array.length nombre de lignes | nombre de données
x. (). () élément Iign'e 7, jémf\ attribut ,
colonne j de la 7eéme donnée
Array.length x.(0) | nombre de colonnes | nombre d'attributs




Science des données : Distance

Pour savoir si deux données sont « proches » I'une de I'autre, on utilise
une distance sur les données, c'est-a-dire sur R?.

Exemples :

@ Distance euclidienne :
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Quand les attributs n’ont pas la méme échelle, un attribut peut avoir
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beaucoup plus d'importance qu'un autre dans les calculs de distance.

Pour que les attributs aient la méme importance, on peut standardiser
les données, c'est-a-dire les modifier pour avoir une moyenne de 0 et un
écart-type de 1.



Science des données : Standardisation

Quand les attributs n’ont pas la méme échelle, un attribut peut avoir
beaucoup plus d'importance qu'un autre dans les calculs de distance.

Pour que les attributs aient la méme importance, on peut standardiser
les données, c'est-a-dire les modifier pour avoir une moyenne de 0 et un
écart-type de 1.

La plupart des algorithmes de science des données fonctionnent mieux
avec des données standardisées.



Science des données : Standardisation

Théoreme

Z—E
Si Z est une variable aléatoire d'écart-type o # 0 alors ¢ a une
(o

espérance nulle et un écart-type égal a 1.
V.
Ecrire une fonction

float standardiser(float** X, int n, int p) qui standardise
les données X de taille n X p.




Apprentissage supervisé

Probléme d'apprentissage supervisé

Inconnu : f: X — Y, ol X un ensemble de données et Y un
ensemble d'étiquettes (ou classes).
Entrée : des données d'entrainement z;, ..., z, € X et leurs étiquettes

f(z1),.os f(zp) € Y.

Sortie : une fonction g : X — Y approximant f.

A partir de données d’entrainement dont on connait la classe, on veut
prédire la classe de nouvelles données.
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Apprentissage supervisé

Probléme d'apprentissage supervisé

Inconnu : f: X — Y, ou X un ensemble de données et Y un
ensemble d'étiquettes (ou classes).
Entrée : des données d'entrainement z;, ..., z, € X et leurs étiquettes

f(x1), ..., f(zp) € Y.

Sortie : une fonction g : X — Y approximant f.

A partir de données d’entrainement dont on connait la classe, on veut
prédire la classe de nouvelles données.

Suivant I'ensemble possible d’étiquettes, on parle de :

o Classification : Y est fini, par exemple Y = {1, ..., k}.
Exemples : k plus proches voisins, arbre de décision, réseau de
neurones...

@ Régression : Y est un ensemble continu, par exemple Y = R.
Exemples : régression linéaire, modele linéaire généralisé...



Apprentissage supervisé

On souhaite éviter le surapprentissage (overfitting) ou |'algorithme
approxime trop bien les données d'entrainement et ne généralise mal
sur de nouvelles données.
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Le polyn6me de Lagrange passe par tous les points
d’entrainement mais généralise moins bien que la
régression linéaire.



Apprentissage supervisé

Probléme d'apprentissage supervisé

Inconnu : f: X — Y, ol X un ensemble de données et Y un
ensemble d'étiquettes (ou classes).
Entrée : des données d'entrainement z;, ..., z, € X et leurs étiquettes

f(x1), ..., f(zp) € Y.

Sortie : une fonction g : X — Y approximant f.

Exemples de problémes de classification :

données X classes Y f(z)
Tailles de tumeurs | Maligne, Bénigne Gravité de z
Mails Spam, Non-spam Ce mail

est-il un spam ?
Chiffre représenté
sur z 7

Images 10, 9]

classique,

Genre musical de z
rap, rock...

Musiques




Algorithme des k plus proches voisins (KNN)

Soit k € N.
L'algorithme des k plus proches voisins prédit la classe d'une nouvelle
donnée x de la facon suivante :

@ Trouver les k données d'entrainement les plus proches de z (en
termes de distance).
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Algorithme des k plus proches voisins (KNN)

Soit k € N.
L'algorithme des k plus proches voisins prédit la classe d'une nouvelle
donnée x de la facon suivante :

@ Trouver les k données d'entrainement les plus proches de z (en
termes de distance).

@ Trouver la classe majoritaire ¢ € Y parmi de ces k données.

© Prédire que z est de classe c.



Algorithme des k plus proches voisins (KNN)

Des données dont les classes (rouge ou bleues) sont connues.



Algorithme des k plus proches voisins (KNN)

On veut prédire la classe d'une nouvelle donnée .



Algorithme des k plus proches voisins (KNN)

On trouve les k plus proches voisins.



Algorithme des k plus proches voisins (KNN)

On associe a z la classe majoritaire de ses plus proches voisins.



Etape 1 : Trouver les k plus proches voisins.

Soit x un vecteur sous forme de tableau, X une matrice de données, k
un entier et d une fonction de distance supposée définie.

Ecrire une fonction int* voisins(float* x, float** X, int k)
renvoyant un tableau des indices des k plus proches voisins de x dans X.




bool in(int* T, int n, int x) {
for(int i = 0; i < mn; i++)
if(T[i] == x) return true;
return false;
}
int* voisins(float* x, float** X, int k, int n, int p) {
int* I = malloc(k * sizeof(int));
for(int i = 0; i < k; i++) { // ajout du iéme minimum

int jmin = -1;
for(int j = 0; j < mn; j++)
if(jmin == -1 || d(x, X[jl, p) < d(x, X[jminl, p))
if (1in(I, k, j))
jmin = j;

I[i] = jmin;
X
return I;

Complexité : O(kn(p + k)), si d est en O(p).



Etape 1 : Trouver les k plus proches voisins.

Autres solutions :

@ Trier les données d’'entrainement par ordre croissant de distance a
x et prendre les k premiéres en O(np + nlog(n)).

e Utiliser une file de priorité (tas min) en O(np + nlog(k)).



Etape 2 : Trouver la classe majoritaire

Ecrire une fonction int maj(int* T, int n, int k) renvoyant en
O(n) I'élément le plus fréquent d'un tableau T de taille n dont les
éléments sont compris entre 0 et £ — 1.




Etape 2 : Trouver la classe majoritaire

Ecrire une fonction int maj(int* T, int n, int k) renvoyant en
O(n) I'élément le plus fréquent d'un tableau T de taille n dont les
éléments sont compris entre 0 et £ — 1.

int maj(int* T, int n, int k) {
int* compte = malloc(n, sizeof(int));
for(int i = 0; i < n; i++) compte[i] = 0;
for(int i = 0; i < n; i++) compte[T[i]]++;
int ¢ = 0;
for(int 1 = 1; i < k; i++)
if (compte[i] > comptel[c])
c = 1ij;
free(compte) ;
return c;

Complexité : O(n).



Etape 3 : Prédire la classe de z

Ecrire une fonction

int knn(float* x, float** X, int* Y, int k, int n, int p)
qui prédit la classe de x en utilisant I'algorithme KNN, ou :

x est la donnée a prédire,

X est la matrice des données d’entrainement,

Y[i] est la classe de la donnée X[i],

k est le nombre de voisins a considérer,

n est le nombre de données d’'entrainement,

p est le nombre d’'attributs.




Etape 3 : Prédire la classe de z

int knn(float* x, float** X, int* Y, int k, int n, int p) {
int* I = voisins(x, X, k, n, p);
int* classes = malloc(k * sizeof(int));
for(int i = 0; i < k; i++)
classes[i] = Y[I[il];
int ¢ = maj(classes, k);
free(I);
free(classes);
return c;




Evaluation d'un algorithme d’apprentissage

Supposons posséder des données X avec des étiquettes Y et qu'on
veuille savoir si KNN est un bon classifieur.

Pour cela, on partitionne X en deux ensembles :

@ Ensemble d'entrainement Xirain (de classes Yirain) : données parmi
lesquelles on va chercher les k plus proches voisins.

@ Ensemble de test Xiest (de classes Yiest) : données utilisées pour
évaluer I'algorithme, en comparant les classes prédites par KNN
avec les classes réelles.



Evaluation d'un algorithme d’apprentissage

Définition
@ La précision d'un algorithme d'apprentissage est la proportion de
données de test bien classées par rapport au nombre total de
données.
o L'erreur est égale a 1 — précision.




Evaluation d'un algorithme d’apprentissage

Définition

La matrice de confusion est une matrice carrée dont les lignes et les
colonnes sont les classes possibles. La case (7,j) contient le nombre de
données de test de classe ¢ qui ont été prédites comme appartenant a la
classe j.




Evaluation d'un algorithme d’apprentissage

Définition

La matrice de confusion est une matrice carrée dont les lignes et les
colonnes sont les classes possibles. La case (7,j) contient le nombre de
données de test de classe ¢ qui ont été prédites comme appartenant a la
classe j.

Exemple : Dans la matrice suivante, on voit que toutes les données de
classe 0 ont été prédites correctement, une donnée de classe 1 a été
prédite a tord comme appartenant a la classe 2.

21 0 O
0 29 1
0 2 23

La précision est la somme des éléments diagonaux divisée par la somme
de tous les éléments.



Evaluation d'un algorithme d’apprentissage

Comment choisir la valeur de k dans I'algorithme des k plus proches
voisins ?




Evaluation d'un algorithme d’apprentissage

Comment choisir la valeur de k dans I'algorithme des k plus proches
voisins ?

On peut afficher la précision en fonction de k pour choisir la valeur de &
qui donne la meilleure précision.

0.97

0.96

0.95

Précision




Evaluation d'un algorithme d’apprentissage

On peut aussi visualiser la frontiere de décision (decision boundary)
permettant de voir a quelle classe est associée chaque point de |'espace
des données :

® setosa
® versicolor
@ virginica

sepal width (cm)

4 5 6 7 8
sepal length (cm)



Exemple complet : classification d'iris

Exemples en Python :

o Classification de fleurs

o Classification de chiffres manuscrits (MNIST).


https://cpge-itc.github.io/itc2/dl/apprentissage/cours/knn/exemple/knn_iris.html
https://cpge-itc.github.io/itc2/dl/apprentissage/tp/tp_chiffres/tp_chiffres.html

Un arbre k — d est une structure de données permettant de calculer
plus rapidement les plus proches voisins parmi des points de RP.

Construction de I'arbre : a la profondeur 7, on divise les points de R”
en deux parties égales (1) en prenant comme hyperplan de division
I'axe ¢ modulo p.
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Pour trouver le point le plus proche de y € R? :

@ On trouve la feuille de I'arbre correspondant a la zone contenant y.

@ On remonte |'arbre en conservant la distance minimum trouvée et
en explorant |'autre sous-arbre si nécessaire.
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On peut adapter cette méthode pour trouver les k plus proches voisins
parmi n points efficacement et accélerer I'algorithme des £ plus proches
voisins.



Classification non supervisée

Dans le cas de la classification non supervisée, il n'y a pas de donnée
d’entrainement et I'ensemble des classes possibles n'est pas connue a
I'avance. On cherche a regrouper les données en fonction de leur
proximité.



Algorithme ID3

On suppose dans cette partie que les attributs et les classes sont des
booléens (0 ou 1).

Définition

Un arbre de décision est un arbre binaire ou :
@ Chaque nceud interne est associé a un attribut a et correspond a la
question : « a est-il vrai 7 ».
o Chaque feuille est associée a une classe.




Algorithme ID3

L'algorithme de classification supervisée ID3 comporte deux étapes :
@ Entrainement : construction d'un arbre de décision.

@ Prédiction : classification d’une nouvelle donnée en parcourant
I"arbre.



Algorithme ID3

Définition

Si X est un ensemble de données de classes Y on définit son entropie :

H(X)=—_ p(c)logy(p(c))

ceY

ou p(c) est la proportion de données de classe ¢ dans X.

L'entropie mesure la dispersion des valeurs : plus H(X) est élevée, plus
les données de X sont dispersées dans les classes de Y. Si toutes les
données sont dans la méme classe, H(X) = 0.



Algorithme ID3

Une fonction f : [0,1] — R™ mesurant la surprise d'un événement
(f(p) étant la surprise de voir un événement avec probabilité p se
réaliser) doit raisonnablement vérifier :
© [ continue
@ f(1) = 0 (un évenement certain n'est pas surprenant)
@ Sip < qalors f(p) > f(q) (un événement rare est plus surprenant
qu’un événement fréquent)
Q f(pq) = f(p) + f(q) (la surprise de deux événements indépendants
est la somme des surprises)
@ f(1/2) =1 (normalisation)
Montrer que f(p) = —logy(p).

N\




Algorithme ID3

On met en racine de I'arbre I'attribut qui sépare le mieux les données
d’entrainement en deux classes :

Définition
Si a est un attribut de X, on définit :

H(zla)= ) pla=v)H(X|a=v)

ve{0,1}

ou p(a = v) est la proportion de données de X pour lesquelles a = v et
Xl|a = v est I'ensemble des données de X pour lesquelles a = v.

.

L'algorithme ID3 choisit alors comme racine I'attribut ¢ qui minimise
I'entropie H(X|a) aprés avoir séparé les données en fonction de a (on
veut diminuer |'entropie).



Algorithme ID3

Exemple : On considére un étudiant qui a laissé des avis (positifs ou
négatifs) sur un certains nombre de livre d'informatique. Voici les
attributs de chaque livre :

@ I : Le livre contient des exercices.

@ (' : le livre contient les corrigés de ces exercices.
o F': le livre est écrit en francais.

@ O : le livre utilise OCaml.

@ Y : I'étudiant a laissé un avis positif.

On souhaite prédire si un nouveau livre sera apprécié ou non.
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Algorithme ID3

On calcule :
3 3 9 )
1 1 3 3

8 4
H(X|E) = SH(X|E = 1)+ S H(X|E =0)~ 09



Algorithme ID3

On calcule :
3 3 9 )
1 1 3 3

8 4
H(X|B) = S H(X|E = 1)+  H(X|E = 0) ~ 0.9
De méme, H(X|C) =~ 0.876, H(X|F) ~ 0.92 et H(X|O) =~ 0.46.

On choisit donc O comme attribut de la racine de |'arbre, puis on
s'applique récursivement sur X|O =1 et X|0 = 0.



Algorithme ID3

On obtient I'arbre de décision suivant (ou le fils gauche correspond a 0
et le fils droit a 1) :

Selon I'algorithme ID3, quel avis obtiendrait un livre (E, C, F, O) = (0,
1,1,1)7 (1,0,1,1) ?




